BRISK: Binary Robust Invariant Scalable Keypoints

void BriskScaleSpace::constructPyramid(const cv::Mat& image){
// set correct size:
pyramid_.clear();
// fill the pyramid:
pyramid_.push_back(BriskLayer(image.clone()));
if(layers_>){
pyramid_.push_back(BriskLayer(pyramid_.back(),BriskLayer::CommonParams::TWOTHIRDSAMPLE));
}
const int octaves2=layers_;
for(uint8_t i=; i<octaves2; i+=){
pyramid_.push_back(BriskLayer(pyramid_[i-],BriskLayer::CommonParams::HALFSAMPLE));
pyramid_.push_back(BriskLayer(pyramid_[i-],BriskLayer::CommonParams::HALFSAMPLE));
}
}
__inline__ bool BriskScaleSpace::isMax2D(const uint8_t layer,
const int x_layer, const int y_layer){
const cv::Mat& scores = pyramid_[layer].scores();
const int scorescols = scores.cols;
uchar* data=scores.data + y_layer*scorescols + x_layer;
// decision tree:
const uchar center = (*data);
data--;
const uchar s_10=*data; //
if(center<s_10) return false;
data+=;
const uchar s10=*data; //
if(center<s10) return false;
data-=(scorescols+);
const uchar s0_1=*data; //
if(center<s0_1) return false;
data+=*scorescols;
const uchar s01=*data; //
if(center<s01) return false;
data--;
const uchar s_11=*data; //
if(center<s_11) return false;
data+=;
const uchar s11=*data; //
if(center<s11) return false;
data-=*scorescols;
const uchar s1_1=*data; //
if(center<s1_1) return false;
data-=;
const uchar s_1_1=*data;//
if(center<s_1_1) return false; /*8 3 7
1 0 2
5 4 6*/ // reject neighbor maxima
std::vector<int> delta;
// put together a list of 2d-offsets to where the maximum is also reached
if(center==s_1_1) { //
delta.push_back(-);
delta.push_back(-);
}
if(center==s0_1) { //
delta.push_back();
delta.push_back(-);
}
if(center==s1_1) { //
delta.push_back();
delta.push_back(-);
}
if(center==s_10) { //
delta.push_back(-);
delta.push_back();
}
if(center==s10) { //
delta.push_back();
delta.push_back();
}
if(center==s_11) { //
delta.push_back(-);
delta.push_back();
}
if(center==s01) { //
delta.push_back();
delta.push_back();
}
if(center==s11) { //
delta.push_back();
delta.push_back();
}
const unsigned int deltasize=delta.size();
if(deltasize!=){
// in this case, we have to analyze the situation more carefully:
// the values are gaussian blurred and then we really decide
data=scores.data + y_layer*scorescols + x_layer;
int smoothedcenter=*center+*(s_10+s10+s0_1+s01)+s_1_1+s1_1+s_11+s11;
for(unsigned int i=; i<deltasize;i+=){
//这里把左上角作为中心点进行平滑不知道是何意?
data=scores.data + (y_layer-+delta[i+])*scorescols + x_layer+delta[i]-;
int othercenter=*data;
data++;
othercenter+=*(*data);
data++;
othercenter+=*data;
data+=scorescols;
othercenter+=*(*data);
data--;
othercenter+=*(*data);
data--;
othercenter+=*(*data);
data+=scorescols;
othercenter+=*data;
data++;
othercenter+=*(*data);
data++;
othercenter+=*data;
if(othercenter>smoothedcenter) return false;
}
}
return true;
}

a.BRISK使用固定的样本模式点,而且是以R为半径围绕关键点周围的圆进行均匀取样。因此特定的高斯核平滑不会突然地扭曲亮度内容的信息(模糊邻近的两个采样点的亮度,从而保证亮度平滑过渡)
b.与两两组成的点对相比,BRISK显著的减少了采样点的数量(例如,单个的样本点参与了更多的比较),限制了亮度查找表的复杂度
c.这里的比较是受到空间的限制的,所以亮度的改变仅仅只是需要局部一致性就可以了。
1.利用least square进行曲线拟合中的参数计算




3.<BRISK: Binary Robust Invariant Scalable Keypoints> Stefan Leutenegger, Margarita Chli and Roland Y. Siegwart
BRISK: Binary Robust Invariant Scalable Keypoints的更多相关文章
- 【特征匹配】BRISK原文翻译
原文:Stefan Leutenegger, Margarita Chli et al.<BRISK: Binary Robust Invariant Scalable Keypoints> ...
- opencv::Brisk检测与匹配
Brisk(Binary Robust Invariant Scalable Keypoints)特征介绍 构建尺度空间 特征点检测 FAST9-16寻找特征点 特征点定位 关键点描述子
- Computer Vision_33_SIFT:TILDE: A Temporally Invariant Learned DEtector——2014
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- 【特征检测】BRISK特征提取算法
[特征检测]BRISK特征提取算法原创hujingshuang 发布于2015-07-24 22:59:21 阅读数 17840 收藏展开简介 BRISK算法是2011年ICCV上< ...
- opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较
opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_ ...
- (1)RGB-D SLAM系列- 工具篇(硬件+关键技术)
/*************************************************************************************************** ...
- OpenCV特征点提取----Fast特征
1.FAST(featuresfrom accelerated segment test)算法 http://blog.csdn.net/yang_xian521/article/details/74 ...
- 图像局部显著性—点特征(SIFT为例)
基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测.探测到的主要特征为直觉上可刺激底层视觉的局部显著性--特征点.特征线.特征块. SalientDetection 已经好 ...
- Computer Vision_33_SIFT:Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching——2017
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
随机推荐
- Linux系统性能分析
http://c.biancheng.net/cpp/html/2782.htmlLinux系统性能分析 这篇教程的目的是向大家介绍一些免费的系统性能分析工具(命令),使用这些工具可以监控系统资源使用 ...
- 关于w3school的html5部分output 元素实例代码(点亲自试一试进去)的问题纠正
修复: 将原来的 = 号修改成 <input type="button" onclick="resCalc()" value ="=" ...
- Discuz插件开发中的困惑
1.关于缓存 这几天一直纠结于Discuz的缓存问题,今天终于有点小发现:首先Discuz的缓存可以通过数据库.文件等方式进行!在Discuz的配置文件config_global.php中有一个配置项 ...
- Python学习之运算符
Python运算符 算术运算符 运算符 描述 + 相加 - 相减 * 相乘 / 相除 % 取模 ** 幂 // 整除 比较运算符 运算符 描述 == 等于 != 不等于 <> 不等于 &g ...
- 怎么在excel中快速查找重复记录
假设数字在A列,数字从A1开始:方法一:辅助列中输入公式,数据重复时会出现“重复”提示.=IF(COUNTIF(A:A,A1)>1,"重复","") ,下 ...
- Valid Palindrome ---- LeetCode 125
Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignori ...
- Maven项目pom.xml文件详解
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- 关于jackson处理数据
/** * 将请求参数封装成Map对象 * * @param json 参数 * @return Object */ public static Map ...
- Unity3d游戏场景优化杂谈(2)
动态实时灯光相比静态灯光,非常耗费资源.所以除了能动的角色和物体(比如可以被打的到处乱飞的油桶)静态的地形和建筑,通通使用Lightmap. 强大的Unity内置了一个强大的光照图烘焙工具Beast, ...
- Largest Rectangle in Histogram
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...