BRISK: Binary Robust Invariant Scalable Keypoints

void BriskScaleSpace::constructPyramid(const cv::Mat& image){ // set correct size:
pyramid_.clear(); // fill the pyramid:
pyramid_.push_back(BriskLayer(image.clone()));
if(layers_>){
pyramid_.push_back(BriskLayer(pyramid_.back(),BriskLayer::CommonParams::TWOTHIRDSAMPLE));
}
const int octaves2=layers_; for(uint8_t i=; i<octaves2; i+=){
pyramid_.push_back(BriskLayer(pyramid_[i-],BriskLayer::CommonParams::HALFSAMPLE));
pyramid_.push_back(BriskLayer(pyramid_[i-],BriskLayer::CommonParams::HALFSAMPLE));
}
}
__inline__ bool BriskScaleSpace::isMax2D(const uint8_t layer,
const int x_layer, const int y_layer){
const cv::Mat& scores = pyramid_[layer].scores();
const int scorescols = scores.cols;
uchar* data=scores.data + y_layer*scorescols + x_layer;
// decision tree:
const uchar center = (*data);
data--;
const uchar s_10=*data; //
if(center<s_10) return false;
data+=;
const uchar s10=*data; //
if(center<s10) return false;
data-=(scorescols+);
const uchar s0_1=*data; //
if(center<s0_1) return false;
data+=*scorescols;
const uchar s01=*data; //
if(center<s01) return false;
data--;
const uchar s_11=*data; //
if(center<s_11) return false;
data+=;
const uchar s11=*data; //
if(center<s11) return false;
data-=*scorescols;
const uchar s1_1=*data; //
if(center<s1_1) return false;
data-=;
const uchar s_1_1=*data;//
if(center<s_1_1) return false; /*8 3 7
1 0 2
5 4 6*/ // reject neighbor maxima
std::vector<int> delta;
// put together a list of 2d-offsets to where the maximum is also reached
if(center==s_1_1) { //
delta.push_back(-);
delta.push_back(-);
}
if(center==s0_1) { //
delta.push_back();
delta.push_back(-);
}
if(center==s1_1) { //
delta.push_back();
delta.push_back(-);
}
if(center==s_10) { //
delta.push_back(-);
delta.push_back();
}
if(center==s10) { //
delta.push_back();
delta.push_back();
}
if(center==s_11) { //
delta.push_back(-);
delta.push_back();
}
if(center==s01) { //
delta.push_back();
delta.push_back();
}
if(center==s11) { //
delta.push_back();
delta.push_back();
}
const unsigned int deltasize=delta.size();
if(deltasize!=){
// in this case, we have to analyze the situation more carefully:
// the values are gaussian blurred and then we really decide
data=scores.data + y_layer*scorescols + x_layer;
int smoothedcenter=*center+*(s_10+s10+s0_1+s01)+s_1_1+s1_1+s_11+s11;
for(unsigned int i=; i<deltasize;i+=){
//这里把左上角作为中心点进行平滑不知道是何意?
data=scores.data + (y_layer-+delta[i+])*scorescols + x_layer+delta[i]-;
int othercenter=*data;
data++;
othercenter+=*(*data);
data++;
othercenter+=*data;
data+=scorescols;
othercenter+=*(*data);
data--;
othercenter+=*(*data);
data--;
othercenter+=*(*data);
data+=scorescols;
othercenter+=*data;
data++;
othercenter+=*(*data);
data++;
othercenter+=*data;
if(othercenter>smoothedcenter) return false;
}
}
return true;
}
a.BRISK使用固定的样本模式点,而且是以R为半径围绕关键点周围的圆进行均匀取样。因此特定的高斯核平滑不会突然地扭曲亮度内容的信息(模糊邻近的两个采样点的亮度,从而保证亮度平滑过渡)
b.与两两组成的点对相比,BRISK显著的减少了采样点的数量(例如,单个的样本点参与了更多的比较),限制了亮度查找表的复杂度
c.这里的比较是受到空间的限制的,所以亮度的改变仅仅只是需要局部一致性就可以了。
1.利用least square进行曲线拟合中的参数计算

3.<BRISK: Binary Robust Invariant Scalable Keypoints> Stefan Leutenegger, Margarita Chli and Roland Y. Siegwart
BRISK: Binary Robust Invariant Scalable Keypoints的更多相关文章
- 【特征匹配】BRISK原文翻译
原文:Stefan Leutenegger, Margarita Chli et al.<BRISK: Binary Robust Invariant Scalable Keypoints> ...
- opencv::Brisk检测与匹配
Brisk(Binary Robust Invariant Scalable Keypoints)特征介绍 构建尺度空间 特征点检测 FAST9-16寻找特征点 特征点定位 关键点描述子
- Computer Vision_33_SIFT:TILDE: A Temporally Invariant Learned DEtector——2014
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- 【特征检测】BRISK特征提取算法
[特征检测]BRISK特征提取算法原创hujingshuang 发布于2015-07-24 22:59:21 阅读数 17840 收藏展开简介 BRISK算法是2011年ICCV上< ...
- opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较
opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_ ...
- (1)RGB-D SLAM系列- 工具篇(硬件+关键技术)
/*************************************************************************************************** ...
- OpenCV特征点提取----Fast特征
1.FAST(featuresfrom accelerated segment test)算法 http://blog.csdn.net/yang_xian521/article/details/74 ...
- 图像局部显著性—点特征(SIFT为例)
基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测.探测到的主要特征为直觉上可刺激底层视觉的局部显著性--特征点.特征线.特征块. SalientDetection 已经好 ...
- Computer Vision_33_SIFT:Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching——2017
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
随机推荐
- Java Swing 第03记 布局管理器
几种Swing常用的布局管理器 BorderLaout 它将容器分为5个部分,即东.南.西.北.中,每一个区域可以容纳一个组件,使用的时候也是通过BorderLayout中5个方位常量来确定组件所在的 ...
- 第10章 嵌入式Linux的调试技术
printk函数运行在内核空间,printf函数运行在用户空间.也就是说像Linux驱动这样的Linux内核程序只能使用printk函数输出调试信息.printk函数在控制台(也称终端)显示消息是通过 ...
- javaweb常见问题解决
问题一.如果是在导入的项目的情况下,多数情况下就是jdk版本与项目的jdk版本不匹配, 解决方法: (1)右击工程->Build Path->Configure Build Path-&g ...
- jquery点赞和取消点赞插件
<script> /* @author:Romey * 动态点赞 * 此效果包含css3,部分浏览器不兼容(如:IE10以下的版本) */ $(function(){ $("#p ...
- ThinkPHP 自动验证相关注意
1.假如加入了表单令牌的话,表单的各种名与对应Model字段一致,不然报坑爹的令牌错误. 2.假如加入了表单令牌的话,Create只能采用默认的POST数据创建数据对象,不然又是坑爹的令牌错误. 3. ...
- IOS-当遇到tableView整体上移时的解决方案
方案一在使用了navigationController后,当界面进行跳转往返后,时而会出现tableView或collectionView上移的情况,通常会自动上移64个像素,那么这种情况,我们可以关 ...
- SILVERLIGHT 应急卫生模拟演练项目之loading界面实现
第一次在博客园写文章 俺是菜鸟 有不足之处还请大佬们多多指教 第一次也不知道该写啥 俺就拿自己最近做的一个项目 来细说吧 俺们公司是做医疗卫生方面的 其中有一块涉及到应急卫生模拟演练方面 这块分到我 ...
- vconfig使用帮助
====================================================== VCONFIG(8) ...
- 【Android Studio快捷键】之代码提示
接下来说如何设置代码自动提示,如图: 图上内容比较多,我直接按区域划分成6块区域来说吧: 区域1:这个选项是关于提示的时候如何进行匹配,即按照什么条件来进行提示内容的搜索. All:选择这个的话,意思 ...
- Autofac 同时支持MVC 与Webapi
1.引用 using Autofac; using Autofac.Integration.Mvc; using Autofac.Integration.WebApi; 2.在Global中的Appl ...