Java Memory Management, with its built-in garbage collection, is one of the language's finest achievements. It allows developers to create new objects without worrying explicitly about memory allocation and deallocation, because the garbage collector automatically reclaims memory for reuse. This enables faster development with less boilerplate code, while eliminating memory leaks and other memory-related problems. At least in theory.

Ironically, Java garbage collection seems to work too well, creating and removing too many objects. Most memory-management issues are solved, but often at the cost of creating serious performance problems. Making garbage collection adaptable to all kinds of situations has led to a complex and hard-to-optimize system. In order to wrap your head around garbage collection, you need first to understand how memory management works in a Java Virtual Machine (JVM).

How Garbage Collection Really Works

Many people think garbage collection collects and discards dead objects. In reality, Java garbage collection is doing the opposite! Live objects are tracked and everything else designated garbage. As you'll see, this fundamental misunderstanding can lead to many performance problems.

Let's start with the heap, which is the area of memory used for dynamic allocation. In most configurations the operating system allocates the heap in advance to be managed by the JVM while the program is running. This has a couple of important ramifications:

  • Object creation is faster because global synchronization with the operating system is not needed for every single object. An allocation simply claims some portion of a memory array and moves the offset pointer forward (see Figure 2.1). The next allocation starts at this offset and claims the next portion of the array.
  • When an object is no longer used, the garbage collector reclaims the underlying memory and reuses it for future object allocation. This means there is no explicit deletion and no memory is given back to the operating system.
Figure 2.1: New objects are simply allocated at the end of the used heap.

All objects are allocated on the heap area managed by the JVM. Every item that the developer uses is treated this way, including class objects, static variables, and even the code itself. As long as an object is being referenced, the JVM considers it alive. Once an object is no longer referenced and therefore is not reachable by the application code, the garbage collector removes it and reclaims the unused memory. As simple as this sounds, it raises a question: what is the first reference in the tree?

Garbage-Collection Roots — The Source of All Object Trees

Every object tree must have one or more root objects. As long as the application can reach those roots, the whole tree is reachable. But when are those root objects considered reachable? Special objects called garbage-collection roots (GC roots; see Figure 2.2) are always reachable and so is any object that has a garbage-collection root at its own root.

There are four kinds of GC roots in Java:

  1. Local variables are kept alive by the stack of a thread. This is not a real object virtual reference and thus is not visible. For all intents and purposes, local variables are GC roots.
  2. Active Java threads are always considered live objects and are therefore GC roots. This is especially important for thread local variables.
  3. Static variables are referenced by their classes. This fact makes them de facto GC roots. Classes themselves can be garbage-collected, which would remove all referenced static variables. This is of special importance when we use application servers, OSGi containers or class loaders in general. We will discuss the related problems in the Problem Patterns section.
  4. JNI References are Java objects that the native code has created as part of a JNI call. Objects thus created are treated specially because the JVM does not know if it is being referenced by the native code or not. Such objects represent a very special form of GC root, which we will examine in more detail in the Problem Patterns section below.
Figure 2.2: GC roots are objects that are themselves referenced by the JVM and thus keep every other object from being garbage-collected.

Therefore, a simple Java application has the following GC roots:

  • Local variables in the main method
  • The main thread
  • Static variables of the main class

Marking and Sweeping Away Garbage

To determine which objects are no longer in use, the JVM intermittently runs what is very aptly called a mark-and-sweep algorithm . As you might intuit, it's a straightforward, two-step process:

  1. The algorithm traverses all object references, starting with the GC roots, and marks every object found as alive.
  2. All of the heap memory that is not occupied by marked objects is reclaimed. It is simply marked as free, essentially swept free of unused objects.

Garbage collection is intended to remove the cause for classic memory leaks: unreachable-but-not-deleted objects in memory. However, this works only for memory leaks in the original sense. It's possible to have unused objects that are still reachable by an application because the developer simply forgot to dereference them. Such objects cannot be garbage-collected. Even worse, such a logical memory leak cannot be detected by any software (see Figure 2.3). Even the best analysis software can only highlight suspicious objects. We will examine memory leak analysis in the Analyzing the Performance Impact of Memory Utilization and Garbage Collection section, below.

Figure 2.3: When objects are no longer referenced directly or indirectly by a GC root, they will be removed. There are no classic memory leaks. Analysis cannot really identify memory leaks; it can only point out suspicious objects.

Java Memory Management, with its built-in garbage collection, is one of the language's finest achievements. It allows developers to create new objects without worrying explicitly about memory allocation and deallocation, because the garbage collector automatically reclaims memory for reuse. This enables faster development with less boilerplate code, while eliminating memory leaks and other memory-related problems. At least in theory.

Ironically, Java garbage collection seems to work too well, creating and removing too many objects. Most memory-management issues are solved, but often at the cost of creating serious performance problems. Making garbage collection adaptable to all kinds of situations has led to a complex and hard-to-optimize system. In order to wrap your head around garbage collection, you need first to understand how memory management works in a Java Virtual Machine (JVM).

How Garbage Collection Really Works

Many people think garbage collection collects and discards dead objects. In reality, Java garbage collection is doing the opposite! Live objects are tracked and everything else designated garbage. As you'll see, this fundamental misunderstanding can lead to many performance problems.

Let's start with the heap, which is the area of memory used for dynamic allocation. In most configurations the operating system allocates the heap in advance to be managed by the JVM while the program is running. This has a couple of important ramifications:

  • Object creation is faster because global synchronization with the operating system is not needed for every single object. An allocation simply claims some portion of a memory array and moves the offset pointer forward (see Figure 2.1). The next allocation starts at this offset and claims the next portion of the array.
  • When an object is no longer used, the garbage collector reclaims the underlying memory and reuses it for future object allocation. This means there is no explicit deletion and no memory is given back to the operating system.
Figure 2.1: New objects are simply allocated at the end of the used heap.

All objects are allocated on the heap area managed by the JVM. Every item that the developer uses is treated this way, including class objects, static variables, and even the code itself. As long as an object is being referenced, the JVM considers it alive. Once an object is no longer referenced and therefore is not reachable by the application code, the garbage collector removes it and reclaims the unused memory. As simple as this sounds, it raises a question: what is the first reference in the tree?

Garbage-Collection Roots — The Source of All Object Trees

Every object tree must have one or more root objects. As long as the application can reach those roots, the whole tree is reachable. But when are those root objects considered reachable? Special objects called garbage-collection roots (GC roots; see Figure 2.2) are always reachable and so is any object that has a garbage-collection root at its own root.

There are four kinds of GC roots in Java:

  1. Local variables are kept alive by the stack of a thread. This is not a real object virtual reference and thus is not visible. For all intents and purposes, local variables are GC roots.
  2. Active Java threads are always considered live objects and are therefore GC roots. This is especially important for thread local variables.
  3. Static variables are referenced by their classes. This fact makes them de facto GC roots. Classes themselves can be garbage-collected, which would remove all referenced static variables. This is of special importance when we use application servers, OSGi containers or class loaders in general. We will discuss the related problems in the Problem Patterns section.
  4. JNI References are Java objects that the native code has created as part of a JNI call. Objects thus created are treated specially because the JVM does not know if it is being referenced by the native code or not. Such objects represent a very special form of GC root, which we will examine in more detail in the Problem Patterns section below.
Figure 2.2: GC roots are objects that are themselves referenced by the JVM and thus keep every other object from being garbage-collected.

Therefore, a simple Java application has the following GC roots:

  • Local variables in the main method
  • The main thread
  • Static variables of the main class

Marking and Sweeping Away Garbage

To determine which objects are no longer in use, the JVM intermittently runs what is very aptly called a mark-and-sweep algorithm . As you might intuit, it's a straightforward, two-step process:

  1. The algorithm traverses all object references, starting with the GC roots, and marks every object found as alive.
  2. All of the heap memory that is not occupied by marked objects is reclaimed. It is simply marked as free, essentially swept free of unused objects.

Garbage collection is intended to remove the cause for classic memory leaks: unreachable-but-not-deleted objects in memory. However, this works only for memory leaks in the original sense. It's possible to have unused objects that are still reachable by an application because the developer simply forgot to dereference them. Such objects cannot be garbage-collected. Even worse, such a logical memory leak cannot be detected by any software (see Figure 2.3). Even the best analysis software can only highlight suspicious objects. We will examine memory leak analysis in the Analyzing the Performance Impact of Memory Utilization and Garbage Collection section, below.

Figure 2.3: When objects are no longer referenced directly or indirectly by a GC root, they will be removed. There are no classic memory leaks. Analysis cannot really identify memory leaks; it can only point out suspicious objects.

How Garbage Collection Really Works的更多相关文章

  1. Java Garbage Collection Basics--转载

    原文地址:http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html Overview Purpose ...

  2. AutoReleasePool 和 ARC 以及Garbage Collection

    AutoReleasePool autoreleasepool并不是总是被auto 创建,然后自动维护应用创建的对象. 自动创建的情况如下: 1. 使用NSThread的detachNewThread ...

  3. 2.5 – Garbage Collection 自动垃圾回收 Stop-the-world vs. incremental vs. concurrent 垃圾回收策略

    2.5 – Garbage Collection  自动垃圾回收 Lua 5.3 Reference Manual http://www.lua.org/manual/5.3/manual.html# ...

  4. Garbage Collection Optimization for High-Throughput and Low-Latency Java Applications--转载

    原文地址:https://engineering.linkedin.com/garbage-collection/garbage-collection-optimization-high-throug ...

  5. Why you need to understand garbage collection

    Why you need to understand garbage collection I’ve been interviewing lots of C# developers recently, ...

  6. Unity性能优化(3)-官方教程Optimizing garbage collection in Unity games翻译

    本文是Unity官方教程,性能优化系列的第三篇<Optimizing garbage collection in Unity games>的翻译. 相关文章: Unity性能优化(1)-官 ...

  7. [翻译]Java垃圾收集精粹(Java Garbage Collection Distilled)

    source URL: http://www.infoq.com/articles/Java_Garbage_Collection_Distilled Name: Java Garbage Colle ...

  8. The Impact of Garbage Collection on Application Performance

    As we’ve seen, the performance of the garbage collector is not determined by the number of dead obje ...

  9. [Java] 垃圾回收 ( Garbage Collection ) 的步骤演示

    关于 JVM 垃圾回收机制的基础内容,可参考上一篇博客 垃圾回收机制 ( Garbage Collection ) 简介 上一篇博客,介绍了堆的内存被分为三个部分:年轻代.老年代.永生代.这篇博文将演 ...

随机推荐

  1. css基本设置

    css引入方式: 头部引入:在HTML页面头部编写程序(一般用在访问量大的网页上) 标签内引入:在标签内直接写样式(优先级最高,但难于维护,会沉积大量代码) 外部引入:用link标签引入(常用 ,维护 ...

  2. runtime 初入

    一.runtime简介 RunTime简称运行时.OC就是运行时机制,也就是在运行时候的一些机制,其中最主要的是消息机制. 对于C语言,函数的调用在编译的时候会决定调用哪个函数. 对于OC的函数,属于 ...

  3. Android 学习第12课,应用出错信息

    应用在运行时,出现的错误信息都会在LogCat中显示 如果调出LogCat ? 菜单:窗口 -> 显示视图 -> 其他 -> LogCat

  4. Hql 中 dao 层 以及daoimpl 层的代码,让mvc 模式更直观简洁

    1.BaseDao接口: //使用BaseDao<T> 泛型 ,在service中注入的时候,只需要将T换为对应的bean即可 public interface BaseDao<T& ...

  5. 【海洋女神原创】How to: Installshield做安装包时如何添加文件

    我一直以为这不是一个问题,可是没想到在几个群内,对于如何向安装包添加文件不解的大有人在,今日稍暇,整理成篇,以供参考 首先我想再大声地说一遍:不要再跟我说英文看不懂了!!!!你做了程序员这一行,就得逼 ...

  6. 两个不同的list随机组合到一个List中。

    今天组长给了一个绑定任务,业务需要把一男一女随机的老师绑定到考场. 测试例子入下: package com.test; import java.util.ArrayList; import java. ...

  7. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  8. ”未在本地计算机上注册“microsoft.et.OLEDB.4.0”提供程序。“解决方案大集合

    本人在做一个连接Access数据库的时候,程序扔给我一个如此Bug——“未在本地计算机上注册“microsoft.et.OLEDB.4.0”, 请教度娘,告诉我可能是如下因素: 一.“设置应用程序池默 ...

  9. linux文件系统节点详解

    linux文件系统有两层结构,逻辑结构和物理结构.也就是inode和block. 每个文件都有一个inode, 记录文件属性:权限,时间还有最重要的block号码. block是实际存放文件内容的地方 ...

  10. 《C专家编程》第二章——这不是Bug,而是语言特性

    无论一门语言有多么流行或多么优秀,它总是存在一些问题,C语言也不例外.本章讨论的重点是C语言本身存在的问题,作者煞费苦心的用一个太空任务和软件的故事开头,也用另一个太空任务和软件的故事结尾,引人入胜. ...