Sheng Zhang_AAAI2018_Feature Enhancement Network_A Refined Scene Text Detector

作者

关键词

文字检测、水平文字、Faster- RCNN、xywh、multi-stage

方法亮点

  • Feature Enhancement RPN (FE-RPN) :在原来的RPN基础上增加了两个卷积分支来增强文字特征的鲁棒性,一个分支通过增加长条形卷积核来提高对长条形文字的检测能力, 另一个分支利用增加池化和上采样层等方式来扩大感受野以此提高对文字大小的鲁棒性。
  • Adaptively Weighted Position-Sensitive RoI Pooling:通过增加ROI pooling的池化网格种类数并取加权平均的方式来保证针对不同大小的文字都能进行自适应的池化。

方法概述

本文方法是对Faster RCNN进行改造,改造的点主要包括对增加RPN卷积的分支、特征融合时参照HyperNet压缩中间层特征、ROI Pooling增加网格种类数并进行加权平均这几点来检测水平文本。

方法细节

网络结构

该网络框架是Faster RCNN。主要修改是图中的四个红色虚线框。

Figure 1: The overall architecture of our FEN. It consists of three innovative components. 1, Feature Enhancement network stem with Feature Enhancement RPN (FE-RPN) and Hyper Feature Generation; 2, Positives mining; 3, Adaptively weighted position-sensitive RoI pooling.

FE-RPN

原来的RPN只有$3*3$的卷积核,现在增加了两个分支。

一个分支是一个$1*3$的长条形卷积核,主要是为了检测长条形文字。

另一个分支是一个池化 +一个$1*1$的卷积 +一个上采样层。这个分支主要是为了扩大感受野增加对文字大小的鲁棒性。

Hyper Feature Generation

其实就是一个多层特征融合的类似于FPN的结构。

Previous object detection approaches always make full use of single scale and high level semantic feature to conduct the refinement of object detection, which may lose much information of object details and thus insufficient for accurate objection localization, especially for smaller text regions.

In a word, high level semantic feature is conducive to object classification while low level feature is beneficial for accurate object localization.

In HyperNet,feature maps originated from different intermediate layers have different spatial size and are merged together by pooling, convolution, deconvolution operations.

Positive Mining

利用对groundTruth做一些scale上的随机变换,以此来扩增正样本(利用的原理是:框在小范围内波动都可以视为正确的检测)

Adaptively Weighted Position-Sensitive RoI Pooling

原来只有1个$77$的池化,这种方形池化不适合文字这种长条形目标。所以又增加了$37,3*3$等多种池化方式,然后采用加权平均方式来算得到最终池化结果。

Clearly, different pooling sizes are suitable for different text regions which own different spatial sizes and aspect-ratios, the most suitable pooling size will get the highest score.

Moreover, with regard to bounding-box regression, we will share the evaluated adaptive weight and do it in the same way.

实验结果

  • 每个步骤的有效性

Table 1: The effectiveness of different components of our method on ICDAR 2011 and 2013 robust text detection datasets. IC13 Eval: ICDAR 2013 evaluation criterion; DetEval: (Wolf and Jolion 2006); R: recall; P: precision; F: F-measure. PM: Positives Mining. FENS: Feature Enhancement Network Stem. MT: multi-scale test.

  • ICDAR2011和ICDAR2013

Table 2: Comparison with state-of-the-art methods on ICDAR 2011 and 2013 robust text detection datasets. IC13 Eval: ICDAR 2013 evaluation criterion; DetEval: (Wolf and Jolion 2006); R: recall; P: precision; F: F-measure. MT: multi-scale test.

  • Positive Mining(PM)的有效性

总结与收获

这篇文章改进的方法主要是针对文字特征进行enhance,主要思路简单说就是增加分支扩大网络宽度。

【论文速读】Sheng Zhang_AAAI2018_Feature Enhancement Network_A Refined Scene Text Detector的更多相关文章

  1. 【论文速读】XiangBai_TIP2018_TextBoxes++_A Single-Shot Oriented Scene Text Detector

    XiangBai_TIP2018_TextBoxes++_A Single-Shot Oriented Scene Text Detector 作者和代码 Minghui Liao, Baoguang ...

  2. 【论文速读】XiangBai_CVPR2018_Rotation-Sensitive Regression for Oriented Scene Text Detection

    XiangBai_CVPR2018_Rotation-Sensitive Regression for Oriented Scene Text Detection 作者和代码 caffe代码 关键词 ...

  3. 论文速读(Chuhui Xue——【arxiv2019】MSR_Multi-Scale Shape Regression for Scene Text Detection)

    Chuhui Xue--[arxiv2019]MSR_Multi-Scale Shape Regression for Scene Text Detection 论文 Chuhui Xue--[arx ...

  4. 论文速读(Yongchao Xu——【2018】TextField_Learning A Deep Direction Field for Irregular Scene Text)

    Yongchao Xu--[2018]TextField_Learning A Deep Direction Field for Irregular Scene Text Detection 论文 Y ...

  5. 论文阅读(Xiang Bai——【arXiv2016】Scene Text Detection via Holistic, Multi-Channel Prediction)

    Xiang Bai--[arXiv2016]Scene Text Detection via Holistic, Multi-Channel Prediction 目录 作者和相关链接 方法概括 创新 ...

  6. 论文阅读(XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network)

    XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  7. 论文速读(Jiaming Liu——【2019】Detecting Text in the Wild with Deep Character Embedding Network )

    Jiaming Liu--[2019]Detecting Text in the Wild with Deep Character Embedding Network 论文 Jiaming Liu-- ...

  8. 【论文速读】Cong_Yao_CVPR2017_EAST_An_Efficient_and_Accurate_Scene_Text_Detector

    Cong_Yao_CVPR2017_EAST_An_Efficient_and_Accurate_Scene_Text_Detector 作者和代码 非官方版tensorflow实现 非官方版kera ...

  9. 【论文速读】Yuliang Liu_2017_Detecting Curve Text in the Wild_New Dataset and New Solution

    Yuliang Liu_2017_Detecting Curve Text in the Wild_New Dataset and New Solution 作者和代码 caffe版代码 关键词 文字 ...

随机推荐

  1. Python线性表——单链表

    1. 线性表简介 线性表是一种线性结构,它是由零个或多个数据元素构成的有限序列.线性表的特征是在一个序列中,除了头尾元素,每个元素都有且只有一个直接前驱,有且只有一个直接后继,而序列头元素没有直接前驱 ...

  2. 06-JDBC

    JDBC > JAVA Database Connectivity java 数据库连接 * 为什么会出现JDBC > SUN公司提供的一种数据库访问规则.规范, 由于数据库种类较多,并且 ...

  3. Mac_IntelliJ IDEA For Mac 快捷键

    Mac键盘符号和修饰键说明 ⌘ Command ⇧ Shift ⌥ Option ⌃ Control ↩︎ Return/Enter ⌫ Delete ⌦ 向前删除键(Fn+Delete) ↑ 上箭头 ...

  4. Jmeter初步

    Jmeter 3. 去掉没有必要的结果记录 对于一些不必要的日志信息可以暂时不要记录. 例如:结果树. 当然可以勾选记录那些失败的日志. 聚合报告中,点击  configure,根据需求设置自己想要保 ...

  5. TP5在前端时间戳转换为时间格式

     value="{:date('Y-m-d H:i:s',$data['add_date'])}"  例如: <td>{:date('Y-m-d H:i:s',$d[' ...

  6. C# 复选框显示多项选择

    private void Form1_Load(object sender, EventArgs e) { checkedListBox1.Items.Add("语文"); che ...

  7. Windows 安装JDK

    Windows 安装JDK jdk为java开发工具,jre为java运行环境,安装一个jdk版本会把两个一起装 步骤: 1.在官网下载jdk:http://www.oracle.com/techne ...

  8. Nuxt.js调用asyncData

    <template> <div> Index {{ username }} </div> </template> <script> expo ...

  9. Vue.js的简介

    vue.js简介 Vue.js读音 /vjuː/, 类似于 view   Vue.js是前端三大新框架:Angular.js.React.js.Vue.js之一,Vue.js目前的使用和关注程度在三大 ...

  10. stm32入门学习路线个人见解

    可以说就目前的市场需求来看,stm32在单片机领域已经拥有了绝对的地位,51什么的已经过时了也只能拿来打基础了,最后依然会转到stm32来,也正是因为这样stm32的学习者越来越多,其中不难发现绝大部 ...