大数据平台Lambda架构详解
Lambda架构由Storm的作者Nathan Marz提出。旨在设计出一个能满足。实时大数据系统关键特性的架构,具有高容错、低延时和可扩展等特。
Lambda架构整合离线计算和实时计算,融合不可变(Immutability,读写分离和隔离 一系列构原则,可集成Hadoop,Kafka,Storm,Spark,HBase等各类大数据组件。
Lambda架构的主要思想就是将大数据系统构建为多个层次,三层架构:批处理层、实时处理层、服务层 ,如下图
批处理层:批量处理数据,生成离线结果
实时处理层:实时处理在线数据,生成增量结果
服务层:结合离线、在线计算结果,推送上层
1.批处理层
在Lambda架构中,实现batch view = function(all data)的部分被称之为 batch layer。它承担了两个职责:
存储Master Dataset,这是一个不变的持续增长的数据集
针对这个Master Dataset进行预运算
显然,Batch Layer执行的是批量处理,例如Hadoop或者Spark支持的Map-Reduce方式。 它的执行方式可以用一段伪代码来表示
1
function runBatchLayer():
while (true):
recomputeBatchViews()
1
2
3
利用Batch Layer进行预运算的作用实际上就是将大数据变小,从而有效地利用资源,改善实时查询的性能。但这里有一个前提,
就是我们需要预先知道查询需要的数据,如此才能在Batch Layer中安排执行计划,定期对数据进行批量处理。 此外,还要求这些预运算的统计数据是支持合并(merge)的。
2实时处理层
只要batch layer完成对batch view的预计算,serving layer就会对其进行 更新。这意味着在运行预计算时进入的数据不会马上呈现到batch view中。这对于 要求完全实时的数据系统而言是不能接受的。要解决这个问题,就要通过speed layer。从对数据的处理来看,speed layer与batch layer非常相似,它们之间最大的 区别是前者只处理最近的数据,后者则要处理所有的数据。
另一个区别是为了满足最 小的延迟,speed layer并不会在同一时间读取所有的新数据,相反,它会在接收到 新数据时,更新realtime view, 而不会像batch layer那样重新运算整个view。 speed layer是一种增量的计算,而非重新运算(recomputation)。
因而,Speed Layer的作用包括:
对更新到serving layer带来的高延迟的一种补充
快速、增量的算法
最终Batch Layer会覆盖speed layer
Speed Layer的等式表达如下所示:
realtime view = function(realtime view, new data)
1
3服务层
Batch Layer通过对master dataset执行查询获得了batch view,而 Serving Layer就要负责对batch view进行操作,从而为最终的实时查询提供支撑。因此Serving Layer的职责包含:
对batch view的随机访问
更新batch view Serving Layer应该是一个专用的分布式数据库,例如Elephant
DB,以支持对batch view的加载、随机读取以及更新。
注意,它并不支持对batch view的随机写,因为随机写会为数据库引来许多复杂 性。简单的特性才能使系统变得更健壮、可预测、易配置,也易于运维。
总结下来,Lambda架构就是如下的三个等式
batch view = function(all data)
realtime view = function(realtime view, new data)
query = function(batch view . realtime view)
1
2
3
4.Lambda架构组件选型
下图给出了Lambda架构中各个层常用的组件。数据流存储可选用基于不 可变日志的分布式消息系统Kafka;Batch Layer数据集的存储可选用Hadoop的 HDFS,或者是阿里云的ODPS;Batch View的预计算可以选用MapReduce或 Spark;Batch View自身结果数据的存储可使用MySQL(查询少量的最近结果数 据),或HBase(查询大量的历史结果数据)。Speed Layer增量数据的处理可选用 Storm或Spark Streaming;Realtime View增量结果数据集为了满足实时更新的效 率,可选用Redis等内存NoSQL
5.Lambda架构组件选型原则
Lambda架构是个通用框架,各个层选型时不要局限时上面给出的组件,特 别是对于View的选型。从我对Lambda架构的实践来看,因为View是个和业务关联 性非常大的概念,View选择组件时关键是要根据业务的需求,来选择最适合查询的 组件。不同的View组件的选择要深入挖掘数据和计算自身的特点,从而选择出最适 合数据和计算自身特点的组件,同时不同的View可以选择不同的组件。
6.Lambda架构优缺点
优点:
实时:低延迟处理数据
可重计算:由于数据不可变,重新计算一样可以得到正确的结果
容错:第二点带来的,程序bug、系统问题等,可以重新计算
复杂性分离、读写分离
缺点:
开发和运维的复杂性:Lambda需要将所有的算法实现两次,一次是为批处理系统,另一次是为实时系统,还要求查询得到的是两个系统结果的合并
大数据平台Lambda架构详解的更多相关文章
- Others-大数据平台Lambda架构浅析(全量计算+增量计算)
大数据平台Lambda架构浅析(全量计算+增量计算) 2016年12月23日 22:50:53 scuter_victor 阅读数:1642 标签: spark大数据lambda 更多 个人分类: 造 ...
- hadoop大数据基础框架技术详解
一.什么是大数据 进入本世纪以来,尤其是2010年之后,随着互联网特别是移动互联网的发展,数据的增长呈爆炸趋势,已经很难估计全世界的电子设备中存储的数据到底有多少,描述数据系统的数据量的计量单位从MB ...
- CentOS6.5下如何正确下载、安装Intellij IDEA、Scala、Scala-intellij-bin插件、Scala IDE for Eclipse助推大数据开发(图文详解)
不多说,直接上干货! 第一步:卸载CentOS中自带openjdk Centos 6.5下的OPENJDK卸载和SUN的JDK安装.环境变量配置 第二步:安装Intellij IDEA 若是3节点 ...
- 30个mysql千万级大数据SQL查询优化技巧详解
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...
- 【大数据系列】MapReduce详解
MapReduce是hadoop中的一个计算框架,用来处理大数据.所谓大数据处理,即以价值为导向,对大数据加工,挖掘和优化等各种处理. MapReduce擅长处理大数据,这是由MapReduce的设计 ...
- 大数据入门第六天——HDFS详解
一.概述 1.HDFS中的角色 Block数据: HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是 ...
- 大数据之ETL设计详解
ETL是BI项目最重要的一个环节,通常情况下ETL会花掉整个项目的1/3的时间,ETL设计的好坏直接关接到BI项目的成败.ETL也是一个长期的过程,只有不断的发现问题并解决问题,才能使ETL运行效率更 ...
- 【大数据笔记】白话详解Zookeeper的一致性
下面内容主要摘抄于<<Hadoop实战>>,红色高亮部分是本人添加的白话注释. Zookeeper 是一种高性能.可扩展的服务. Zookeeper 的读写速度非常快,并且读的 ...
- 知名大厂如何搭建大数据平台&架构
今天我们来看一下淘宝.美团和滴滴的大数据平台,一方面进一步学习大厂大数据平台的架构,另一方面也学习大厂的工程师如何画架构图.通过大厂的这些架构图,你就会发现,不但这些知名大厂的大数据平台设计方案大同小 ...
随机推荐
- 三种方式给apt设置代理
为什么设置代理,你懂得. 有很多第三方工具可以用,比如proxychains,非常好用,不过今天这不是正题.因为有可能没有代理,上网你都做不到,更别提下载软件了.想一想方法还是告诉你,免得你万一必须用 ...
- .net core通过多路复用实现单服务百万级别RPS吞吐
多路复用其实并不是什么新技术,它的作用是在一个通讯连接的基础上可以同时进行多个请求响应处理.对于网络通讯来其实不存在这一说法,因为网络层面只负责数据传输:由于上层应用协议的制订问题,导致了很多传统服务 ...
- 带着新人学springboot的应用06(springboot+RabbitMQ 中)
上一节说了这么多废话,看也看烦了,现在我们就来用鼠标点点点,来简单玩一下这个RabbitMQ. 注意:这一节还是不用敲什么代码,因为上一节我们设置了那个可视化工具,我们先用用可视化工具熟悉一下流程. ...
- 微服务SpringCloud容器化案例
前言 当我们在使用微服务的时候,那么有一个问题一定会困扰我们,那就是项目的测试和部署.因为在单体应用下,部署项目很简单,直接打包启动就可以了,而对于微服务来说,因为有各个组件的存在所以让测试和部署都变 ...
- RDIFramework.NET ━ .NET快速信息化系统开发框架 V3.2->Web版本“产品管理”事例编辑界面新增KindEditor复文本编辑控件
KindEditor是一套开源的HTML可视化编辑器,主要用于让用户在网站上获得所见即所得编辑效果,兼容IE.Firefox.Chrome.Safari.Opera等主流浏览器.KindEditor使 ...
- python 中 *args 和 **kwargs 的区别
在 python 中,*args 和 **kwargs 都代表 1个 或 多个 参数的意思.*args 传入tuple 类型的无名参数,而 **kwargs 传入的参数是 dict 类型.下文举例说明 ...
- python基础5--输入输出、错误与异常
1.键盘输入输出 输入:input()和raw_input() 输出:str()和format raw_input([prompt]) 函数从标准输入读取一个行,并返回一个字符串(去掉结尾的换行符): ...
- 【Zabbix】Zabbix-agent自动化脚本
zabbix-agent自动化脚本 作用:批量部署zabbix-agent.用于上百台虚拟机都可以被Zabbix监控. 脚本名:inst-agent.sh #!/bin/bash echo " ...
- formData批量上传的多种实现
前言 最近项目需要批量上传附件,查了下资料,网上很多但看着一脸懵,只贴部分代码,介绍也不详细,这里记录一下自己的采坑与多种实现,以免以后忘记. 这里先介绍下FormData对象,以下内容摘自:http ...
- 使用NOPI写入Excel基础代码
using NPOI.XSSF.UserModel; using System; using System.Collections.Generic; using System.IO; using Sy ...