第一节 anaconda+jupyter+numpy简单使用
数据分析:是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律
数据分析三剑客:Numpy,Pandas,Matplotlib
一 Anaconda
1 下载
官网:https://www.anaconda.com/distribution/

2 安装
https://blog.csdn.net/u012318074/article/details/77075209
3 基本使用
http://python.jobbole.com/86236/
4 库更新及jupyter-notebook默认目录更改方法
https://blog.csdn.net/zenghaitao0128/article/details/78241146
二 jupyter
1 在文件中启动cmd文件

2 输入jupyter notebook


3 快捷键
插入cell: a(之前插入),b(之后插入)
删除cell: x
切换cell模式: y 切换为code模式
m 切换为markdowm 模式(显示html样式)
运行代码:shift+enter
自动补全代码:tab
查看帮助文档:shift+tab
进入编辑:鼠标双击
三 numpy(重点)
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
import numpy as np
一 创建数组
1. 使用np.array()创建
创建一维数组
a = np.array([1,2,3,4,5])

创建二维数组
a1 = np.array([[1,4,3],[4,5,6],[7,8,9.5]])

注意:
numpy默认ndarray的所有元素的类型是相同的
如果传进来的列表中包含不同的类型,则统一为同一类型,优先级:str>float>int
n维数组
import matplotlib.pyplot as plt
img_arr = plt.imread('./bobo.jpg') #图片路径
plt.imshow(img_arr) #显示图片

2 使用np的routines函数创建
1) np.ones(shape, dtype=None, order='C') shape:数组的尺寸(2,3,3) 2行3列3页的数组 dtype:数据类型(str,int,float)
np.ones((4,6)) #创建全1矩阵 4x6

2) np.zeros(shape, dtype=None, order='C') #创建全0矩阵
np.zeros((2,3))

3) np.full(shape, fill_value, dtype=None, order='C') #指定填充数据,创建矩阵

5) np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) 等差数列 start:起始值
stop:终止值
num:个数
endpoint:是否包含终止值,true表示包含
retstep:是否返回步长

6) np.arange([start, ]stop, [step, ]dtype=None) #根据步长取数

7) np.random.randint(low, high=None, size=None, dtype='l') #产生随机整数
np.random.seed(100) #不在随机
np.random.randint(0,100,size=(5,3))

8) np.random.randn(d0, d1, ..., dn) #正态分布中随机取数值
9) np.random.random(size=None) #生成0到1的随机数,左闭右开
二 ndarray的属性
np.random.seed(100)
arr=np.random.randint(50,100,size=(5,5))
arr

数组性质: arr.shape #数组的各维度尺寸,返回元组 arr.size #返回各维度尺寸的乘积 arr.dtype #返回数组的数据类型 type(arr) #返回数组类型

三 ndarray 的基本操作
1 索引 :一维与列表完全一致 多维时同理
np.random.seed(10)
arr = np.random.randint(0,100,size=(5,5))
arr

arr[1][3] = 10000 #索引并赋值
2 切片:一维与列表完全一致 多维时同理
格式: arr[:,:,] 不同维度用‘,'隔开,[行索引,列索引]
#获取二维数组前两行
arr[0:2]
#获取二维数组前两列
arr[:,0:2] #逗号之间表示的行,逗号后面表示的列的切片
#获取二维数组前两行和前两列数据
arr[0:2,0:2]

3 数据反转 ,例如[1,2,3]---->[3,2,1] ---> ::进行切片
#将数组的行倒序
arr[::-1]
#列倒序
arr[:,::-1]
#全部倒序
arr[::-1,::-1]
4 图片的反转
cat_arr=plt.imread('part_1/cat.jpg') #获取图片数据
res_cat_arr=cat_arr[::-1,::-1,::-1] #数据反转
plt.imshow(res_cat_arr) #显示图片


(未反转) (反转后)
5 变形
使用arr.reshape()函数,注意参数是一个tuple!
arr_1.reshape((25,1)) #将多维数组变形成一维数组

arr_1.reshape((-1,5)) #-1表示自动计算行数

使用变形图片倒置
img_arr.shape #获取图片数组的尺寸 #将元数据变形成一维
img_arr_one_ndim = img_arr.reshape((626*413*3)) #将变形后的一维数组中的元素全部倒置
img_arr_one_ndim = img_arr_one_ndim[::-1] #重新塑造回原先的多维数组
arr_img_finally = img_arr_one_ndim.reshape((626,413,3)) plt.imshow(arr_img_finally) #展示图片

6 级联
- np.concatenate()
np.concatenate((arr1,arr2),axis=1) #axis=0 纵轴 1横轴

图片的合并---九宫格
tree_arr=np.concatenate((cat_arr,cat_arr,cat_arr),axis=1) #横向合并 nine_arr=np.concatenate((tree_arr,tree_arr,tree_arr),axis=0) #纵向合并 plt.imshow(nine_arr)

- np.hstack与np.vstack
np.vstack((arr,arr1)) 垂直方向级联
np.vstack((arr,arr1)) 纵向方向级联
级联需要注意的点:
1 级联的参数是列表:一定要加中括号或小括号
2 维度必须相同
3 形状相符:在维度保持一致的前提下,如果进行横向(axis=1)级联,
必须保证进行级联的数组行数保持一致。如果进行纵向(axis=0)级联,
必须保证进行级联的数组列数保持一致。
4 可通过axis参数改变级联的方向
6 切分
与级联类似,三个函数完成切分工作:
np.split(arr,行/列号,轴):参数2是一个列表类型
np.vsplit 垂直方向切割
np.hsplit 水平方向切割
arr

np.split(arr,(2,4),axis=1) #在纵向索引为2,4的位置切割

- 切割照片
cat_arr=plt.imread('part_1/cat.jpg')#获取图片数据
c1,c2,c3=np.split(cat_arr,(150,360),axis=0) #纵向切割,并解包
plt.imshow(c1)
plt.imshow(c2)
plt.imshow(c3)

7 副本
所有赋值运算不会为ndarray的任何元素创建副本。对赋值后的对象的操作也对原来的对象生效。
arr_= arr.copy() #产生一个arr一样的副本
四 ndarray 的聚合操作
- 求和np.sum
arr.sum(axis=1) #横向求和 arr.sum(axis=0) #纵向求和
- 最大值最小值 np.max/np.min
arr.max(axis=1) #横向取最大 arr.max(axis=0) #纵向取最大
- 平均值 np.mean()
arr.mean() #取所有数据的平均值
- 其他聚合操作
Function Name NaN-safe Version Description
np.sum np.nansum Compute sum of elements
np.prod np.nanprod Compute product of elements
np.mean np.nanmean Compute mean of elements
np.std np.nanstd Compute standard deviation
np.var np.nanvar Compute variance
np.min np.nanmin Find minimum value
np.max np.nanmax Find maximum value
np.argmin np.nanargmin Find index of minimum value
np.argmax np.nanargmax Find index of maximum value
np.median np.nanmedian Compute median of elements
np.percentile np.nanpercentile Compute rank-based statistics of elements
np.any N/A Evaluate whether any elements are true
np.all N/A Evaluate whether all elements are true
np.power 幂运算
五 广播机制
【重要】ndarray广播机制的三条规则:缺失维度的数组将维度补充为进行运算的数组的维度。缺失的数组元素使用
已有元素进行补充。 规则一:为缺失的维度补1(进行运算的两个数组之间的维度只能相差一个维度)
规则二:缺失元素用已有值填充
规则三:缺失维度的数组只能有一行或者一列
例1:
m = np.ones((2, 3))
a = np.arange(3)

六 、ndarray的排序
np.sort()与ndarray.sort()都可以,但有区别: np.sort()不改变输入
ndarray.sort()本地处理,不占用空间,但改变输入
np.sort(arr,axis=1) #横向排序 np.sort(arr,axis=0) #纵向排序
第一节 anaconda+jupyter+numpy简单使用的更多相关文章
- [struts2学习笔记] 第一节 关于struts2的简单认知
本文地址:http://blog.csdn.net/sushengmiyan/article/details/40298287 官方文档:http://struts.apache.org/releas ...
- 第一节,初识OpenCV3-图像的读、写、显、格式转化等
之前一直在看深度学习,突然用到了对图像处理的东西,所以过来补充一下OpenCV基础. 就顺便从网上了买了一本OpenCV 3计算机视觉这本书,这本书比较薄,但是目前已经够我用了,在这里就记录一下我的学 ...
- 第一节,TensorFlow基本用法
一 TensorFlow安装 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tsnsor(张量)意味着N维数组,Flow(流)意味着基 ...
- 我的第一节Android课
我的第一节安卓课程,今天非比寻常的一天,我开始了我程序猿之路的第一节安卓课程,安卓课程只是我的一个兴趣班,我的本专业是java开发,因为喜欢做一个属于自己的一个手机APP,就选多个一样技能,毕竟十八般 ...
- 第四章 跨平台图像显示库——SDL 第一节 与SDL第一次亲密接触
http://blog.csdn.net/visioncat/article/details/1596576 GCC for Win32 开发环境介绍(5) 第四章 跨平台图像显示库——SDL 第一节 ...
- 辛星跟您玩转vim第一节之vim的下载与三种模式
首先值得一提的是,我的vim教程pdf版本号已经写完了,大家能够去下载,这里是csdn的下载地址:点此下载 ,假设左边的下载地址挂掉了,也能够自行在浏览器以下输入例如以下地址进行下载:http://d ...
- 第一节:.Net版基于WebSocket的聊天室样例
一. 说在前面的话 该篇文章为实时通讯系列的第一节,基于WebSocket编写了一个简易版聊天样例,主要作用是为引出后面SignalR系列的用法及其强大方便之处,通过这个样例与后续的SignalR对比 ...
- MapServer Tutorial——MapServer7.2.1教程学习——第一节:MapServer的基本配置管理,静态地图应用以及MapFile文件
MapServer Tutorial——MapServer7.2.1教程学习——第一节:MapServer的基本配置管理,静态地图应用以及MapFile文件 前言 万事开头难,有了<MapSer ...
- java第一节感受
第一节java课考试,感觉自从小学期和实习过了以后就等这个测试了,测试过了以后就是中秋节了,下周再上一节java又放国庆节了. 当时报软工的时候就早早地做好了心理准备,但是当亲身经历一遍后真的有了一种 ...
随机推荐
- 学习springboot
一般而言,写个Javaweb应用搭建环境都可能要几十分钟,下载个tomcat服务器,再加上各种xml配置等等,很烦躁,而且每个web应用的配置还差不多,都是什么web.xml,application. ...
- 使用mpvue开发小程序教程(五)
在上一章节中,我们了解了组件的三个基本特性以及组件的基本使用方法.在实际的小程序开发中,我们应该以组件的思维去设计每个小程序的功能页面,对其进行合理的组件拆分,让每个部分都保持功能简洁.条理清楚.各司 ...
- 使用logdashboard查看可视化日志
logdashboard 日志面板是我在Github写的一个开源项目,旨在让查看日志变的方便快捷.在线预览 现在功能有日志检索.趋势图.异常堆栈快速查看.日志详情等 logdashboard支持自定义 ...
- 【MongoDB】MongoDB环境配置
软件下载与安装 1.mongDB下载,可到官网下载,我用的是3.4.6版本.可以放到任意目录下,我的MongDB安装目录为 D:\software\small_softeware\MongoDB 2. ...
- 超级账本fabric原理之gossip详解
Goosip协议 去中心化.容错和最终一致性的算法 信息达到同步的最优时间:log(N). 功能: 节点发现 数据广播 gossip中有三种基本的操作: push - A节点将数据(key,value ...
- Spring Cloud Alibaba基础教程:Nacos配置的加载规则详解
前情回顾: <Spring Cloud Alibaba基础教程:使用Nacos实现服务注册与发现> <Spring Cloud Alibaba基础教程:支持的几种服务消费方式(Res ...
- Linux,在不使用U盘的情况下使用wubi.exe程序在Win7上安装ubuntu-14.04.3版系统
本文介绍如何在不使用U盘的情况下使用wubi.exe程序在Win7上安装ubuntu-14.04.3版系统. 花了一天的时间终于安装上了Ubuntu14.04,过程坎坷,是血泪史,开始报“cannot ...
- C# 处理PPT水印(二)——去除水印效果(文本水印、图片水印)
本文将对C#处理PPT幻灯片中的水印进一步说明和介绍.在C# 处理PPT水印(一)一文中,分享了如何插入水印效果的方法,包括插入文字水印效果.插入图片作为水印效果两种情况,那对于不需要水印效果的情况, ...
- 学JAVA第十天,一维数组及二维数组的使用。
今天老师讲了JAVA数组,之前学C#的时候就学过一维数组,至于二维数组当时只是粗略普及了一下. 现在想学JAVA又学到了数组,但是这次不同,注重讲二维数组,因为老师知道我们都了解一维数组了. 所以现在 ...
- es6的let,const
1.es6 新增的let const 命令 let用来定义一个局部变量,故名思意就是只在当前代码块可用 1.1 let 声明的变量不存在变量提升(var 声明的变量存在变量提升)且代码块内 暂时性死区 ...