P1169 [ZJOI2007]棋盘制作 DP悬线法
题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。
小Q找到了一张由N \times MN×M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入输出格式
输入格式:
包含两个整数NN和MM,分别表示矩形纸片的长和宽。接下来的NN行包含一个N \ \times MN ×M的0101矩阵,表示这张矩形纸片的颜色(00表示白色,11表示黑色)。
输出格式:
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
说明
对于20\%20%的数据,N, M ≤ 80N,M≤80
对于40\%40%的数据,N, M ≤ 400N,M≤400
对于100\%100%的数据,N, M ≤ 2000N,M≤2000
悬线法的强大 甚至不用开dp数组
注意矩形和正方形的写法
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
#define inf 0x3f3f3f3f
//////////////////////////////////
const int N=+;
int dp[N][N];
int mp[N][N];
int ri[N][N];
int le[N][N];
int up[N][N]; int main()
{
int n,m;
RII(n,m);
rep(i,,n)
rep(j,,m)
RI(mp[i][j]),up[i][j]=,le[i][j]=j,ri[i][j]=j;
rep(i,,n)
rep(j,,m)
if(mp[i][j]!=mp[i][j-])
le[i][j]=le[i][j-];
rep(i,,n)
repp(j,m-,)
if(mp[i][j]!=mp[i][j+])
ri[i][j]=ri[i][j+]; int ans1=,ans2=;
rep(i,,n)
rep(j,,m)
{
if(i>)
if(mp[i][j]!=mp[i-][j])
{
le[i][j]=max(le[i][j],le[i-][j]);
ri[i][j]=min(ri[i][j],ri[i-][j]);
up[i][j]=up[i-][j]+;
} int d=ri[i][j]-le[i][j]+;
ans2=max(ans2,d*up[i][j]); int d2=min(d,up[i][j]);//写成d2=min(j-le[i][j]+1,up[i][j])就是错的!
ans1=max(ans1,d2*d2);
}
cout<<ans1<<endl<<ans2; return ;
}
P1169 [ZJOI2007]棋盘制作 DP悬线法的更多相关文章
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)
和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169 p4147 p2701 p1387 #include<cstdio> #include<algorithm& ...
- bzoj1057: [ZJOI2007]棋盘制作(悬线法)
题目要求纵横坐标和奇偶性不同的点取值不同,于是我们把纵横坐标和奇偶性为1的点和0的点分别取反,就变成经典的最大全1子矩阵问题了,用悬线法解决. #include<iostream> #in ...
- 2018.10.19 bzoj1057: [ZJOI2007]棋盘制作(悬线法)
传送门 悬线法板题. 如果只求最大矩形面积那么跟玉蟾宫是一道题. 现在要求最大正方形面积. 所以每次更新最大矩形面积时用矩形宽的平方更新一下正方形答案就行了. 代码: #include<bits ...
- 【BZOJ】1057 [ZJOI2007]棋盘制作(悬线法)
题目 传送门:QWQ 分析 先把题目给出的矩阵变换一下,如果$ a[i][j] $中$ i+j \mod 2 = 1 $那么就对$ a[i][j] $取一下反. 接着就是求原图中最大的0.1子矩阵 详 ...
- 洛谷P1169 棋盘制作【悬线法】【区间dp】
题目:https://www.luogu.org/problemnew/show/P1169 题意:n*m的黑白格子,找到面积最大的黑白相间的正方形和矩形. 思路:传说中的悬线法!用下面这张图说明一下 ...
- [luogu]P1169 [ZJOI2007]棋盘制作[DP][单调栈]
[luogu]P1169 [ZJOI]棋盘制作 ——!x^n+y^n=z^n 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋 ...
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...
随机推荐
- CentOS7配置iptables防火墙
CentOS 7中默认是firewalld防火墙,如果使用iptables需要先关闭firewalld防火墙(1.关闭防火墙,2.取消开机启动). #关闭firewalld systemctl sto ...
- Vim使用技巧:将Tab转换为4个空格
一 Tab转成4个空格 为了防止因为在不同系统中Tab键的宽度不一致而导致代码缩进显示混乱的情况,有必要将Tab键转换成空格,推荐的空格数为4.将下面的代码写入你的.vimrc文件中即可实现在Vim编 ...
- 第七节:利用CancellationTokenSource实现任务取消和利用CancellationToken类检测取消异常。
一. 传统的线程取消 所谓的线程取消,就是线程正在执行的过程中取消线程任务. 传统的线程取消,是通过一个变量来控制,但是这种方式,在release模式下,被优化从cpu高速缓存中读取,而不是从内存中读 ...
- 利用git提交代码
一.首先需要下载git 查看电脑是否安装git,打开终端,输入git,回车如果输出如下,则代表已安装了git 如果未安装,则会输出: 按照提示输入:sudo apt-get install git即可 ...
- 四十九、进程间通信——System V IPC 之消息队列
49.1 System V IPC 介绍 49.1.1 System V IPC 概述 UNIX 系统存在信号.管道和命名管道等基本进程间通讯机制 System V 引入了三种高级进程间通信机制 消息 ...
- Vue-cli 模拟数据库
vue-cli2.x 版本开发: 新版在build目录下的webpack.dev.conf.js配置本地数据访问: 1,在const portfinder = require(‘portfinder’ ...
- Git可视化教程——Git Gui的使用
参考链接:https://blog.csdn.net/qq_34842671/article/details/70916587
- 设计模式九: 观察者模式(Observer Pattern)
简介 观察者属于行为型模式的一种, 又叫发布-订阅模式. 如果一个对象的状态发生改变,依赖他的对象都将发生变化, 那么这种情况就适合使用观察者模式. 它包含两个术语,主题(Subject),观察者(O ...
- C#(在WeBAPI)获取Oracle(在PL/SQL)游标类型的存储过程(用到了RefCursor)
需求:WebAPI服务端,通过Oracle数据库的存储过程,获取数据. 在PL/SQL 建立存储过程:(先来最简单的,就是把整个表都查出来) create or replace procedure S ...
- 题解-HNOI2017 抛硬币
Problem loj2023 题意概述:甲抛掷 \(a\) 次硬币,乙抛掷 \(b\) 次硬币,问有多少种情况甲正面向上的次数比乙多,答案对 \(10^k\) 取模 对于 \(10\%\) 的数据, ...