图论算法之DFS与BFS
- 概述(总)
- 含义特点
- 应用场景
- dfs
- 连通分量
- 二分图判定
- 二叉树的递归遍历
- bfs
- 求割顶和桥
2.二叉树的层次遍历
- 代码实现
/**
* DFS核心伪代码
* 前置条件是visit数组全部设置成false
* @param n 当前开始搜索的节点
* @param d 当前到达的深度
* @return 是否有解
*/
bool DFS(Node n, int d){
if (isEnd(n, d)){//一旦搜索深度到达一个结束状态,就返回true
return true;
}
for (Node nextNode in n){//遍历n相邻的节点nextNode
if (!visit[nextNode]){//
visit[nextNode] = true;//在下一步搜索中,nextNode不能再次出现
if (DFS(nextNode, d+1)){//如果搜索出有解
//做些其他事情,例如记录结果深度等
return true;
}
//重新设置成false,因为它有可能出现在下一次搜索的别的路径中
visit[nextNode] = false;
}
}
return false;//本次搜索无解
}
/**
* 广度优先搜索
* @param Vs 起点
* @param Vd 终点
*/
bool BFS(Node& Vs, Node& Vd){
queue<Node> Q;
Node Vn, Vw;
int i; //初始状态将起点放进队列Q
Q.push(Vs);
hash(Vw) = true;//设置节点已经访问过了! while (!Q.empty()){//队列不为空,继续搜索!
//取出队列的头Vn
Vn = Q.front(); //从队列中移除
Q.pop(); while(Vw = Vn通过某规则能够到达的节点){
if (Vw == Vd){//找到终点了!
//把路径记录,这里没给出解法
return true;//返回
} if (isValid(Vw) && !visit[Vw]){
//Vw是一个合法的节点并且为白色节点
Q.push(Vw);//加入队列Q
hash(Vw) = true;//设置节点颜色
}
}
}
return false;//无解
}
- 总结(总)
- DFS适合此类题目:给定初始状态跟目标状态,要求判断从初始状态到目标状态是否有解。
- BFS适合此类题目:给定初始状态跟目标状态,要求从初始状态到目标状态的最短路径。
- 参考资料
图论算法之DFS与BFS的更多相关文章
- 邻接表实现Dijkstra算法以及DFS与BFS算法
//============================================================================ // Name : ListDijkstr ...
- 图的遍历算法:DFS、BFS
在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为深度优先搜索(DFS)和广度优先搜索(BFS). DFS(深度优先搜索)算法 Depth-First-Search 深度优先 ...
- 图论相关知识(DFS、BFS、拓扑排序、最小代价生成树、最短路径)
图的存储 假设是n点m边的图: 邻接矩阵:很简单,但是遍历图的时间复杂度和空间复杂度都为n^2,不适合数据量大的情况 邻接表:略微复杂一丢丢,空间复杂度n+m,遍历图的时间复杂度为m,适用情况更广 前 ...
- 图论中DFS与BFS的区别、用法、详解…
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- 图论中DFS与BFS的区别、用法、详解?
DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...
- 【数据结构与算法笔记04】对图搜索策略的一些思考(包括DFS和BFS)
图搜索策略 这里的"图搜索策略"应该怎么理解呢? 首先,是"图搜索",所谓图无非就是由节点和边组成的,那么图搜索也就是将这个图中所有的节点和边都访问一遍. 其次 ...
- 图论算法-最小费用最大流模板【EK;Dinic】
图论算法-最小费用最大流模板[EK;Dinic] EK模板 const int inf=1000000000; int n,m,s,t; struct node{int v,w,c;}; vector ...
- 图论算法-网络最大流【EK;Dinic】
图论算法-网络最大流模板[EK;Dinic] EK模板 每次找出增广后残量网络中的最小残量增加流量 const int inf=1e9; int n,m,s,t; struct node{int v, ...
- 【WIP_S9】图论算法
创建: 2018/06/01 图的概念 有向边 有向图 无向边 无向图 点的次数: 点连接的边的数量 闭路: 起点和重点一样 连接图: 任意两点之间都可到达 无闭路有向图: 没有闭路的有向图 森林: ...
随机推荐
- Gym - 101350A Sherlock Bones(思维)
The great dog detective Sherlock Bones is on the verge of a new discovery. But for this problem, he ...
- server被强制关闭,
一个client和一个Server,两者之间建立了一个基于TCP的socket连接,在刚刚建立好连接后,尚未进行数据传输,Server端应用程序突然crush掉了,现在立刻重启Server端应用程序( ...
- require.js使用教程
require.js使用教程 下载require.js, 并引入 官网: http://www.requirejs.cn/ github : https://github.com/requirejs/ ...
- python之shelve模块详解
一.定义 Shelve是对象持久化保存方法,将对象保存到文件里面,缺省(即默认)的数据存储文件是二进制的. 二.用途 可以作为一个简单的数据存储方案. 三.用法 使用时,只需要使用open函数获取一个 ...
- 深入剖析Kubernetes学习笔记:预习篇(01-04)
01 初出茅庐 1.PaaS 项目被大家接纳的一个主要原因? 就是它提供了一种名叫"应用托管". 2.像 Cloud Foundry 这样的 PaaS 项目,最核心的组件是? 一套 ...
- java 为什么wait(),notify(),notifyAll()必须在同步(Synchronized)方法/代码块中调用?
wait()作用:该方法用来将当前线程置入休眠状态,直到接到通知或被中断为止.条件:在调用wait()之前,线程必须要获得该对象的对象级别锁,即只能在同步方法或同步块中调用wait()方法.进入wai ...
- fedora make: gcc:命令未找到(解决方法)
安装C开发环境 由于gcc包需要依赖binutils和cpp包,另外make包也是在编译中常用的,所以一共需要9个包来完成安装,因此我们只需要执行9条指令即可: yum install cpp yum ...
- 练习:javascript分享划过简单效果
利用目标点判断速度speed正负值.利用目标点函数封装传参, <!doctype html> <html lang="en"> <head> & ...
- scheduling while atomic 出现的错误
产生这种情况的原因: 1.当中断发生时,出现了调度做法, 2.另一个是spin_lock 里调用sleep, 让出调度, 另外线程又进行spin_lock, 导致死锁. 相关问题的链接 1.为 ...
- salt软件远程控制服务器
1.salt安装服务器环境 准备2台机器 192.168.11.250 master端(主人) 192.168.11.167 minion端 (奴隶 ) 2.两台机器配置hosts文件,用于加速域名解 ...