概率论中常见分布总结以及python的scipy库使用:两点分布、二项分布、几何分布、泊松分布、均匀分布、指数分布、正态分布
概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。
离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。
连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。
1、两点分布(伯努利分布)
伯努利试验:
伯努利试验是在同样的条件下重复地、各次之间相互独立地进行的一种试验。
即只先进行一次伯努利试验,该事件发生的概率为p,不发生的概率为1-p。这是一个最简单的分布,任何一个只有两种结果的随机现象都服从0-1分布。
最常见的例子为抛硬币
其中,
期望E = p
方差D = p*(1-p)^2+(1-p)*(0-p)^2 = p*(1-p)
2、二项分布(n重伯努利分布)(X~B(n,p))
即做n个两点分布的实验
其中,
E = np
D = np(1-p)
对于二项分布,可以参考https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html
二项分布的应用场景主要是,对于已知次数n,关心发生k次成功。
,即为二项分布公式可求。
对于抛硬币的问题,做100次实验,观察其概率分布函数:
from scipy.stats import binom
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np ## 设置属性防止中文乱码
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
首先导入库函数以及设置对中文的支持
fig,ax = plt.subplots(1,1)
n = 100
p = 0.5
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = binom.stats(n,p,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.arange(binom.ppf(0.01, n, p),binom.ppf(0.99, n, p))
ax.plot(x, binom.pmf(x, n, p),'o')
plt.title(u'二项分布概率质量函数')
plt.show()
观察概率分布图,可以看到,对于n = 100次实验中,有50次成功的概率(正面向上)的概率最大。
3、几何分布(X ~ GE(p))
在n次伯努利实验中,第k次实验才得到第一次成功的概率分布。其中:P(k) = (1-p)^(k-1)*p
E = 1/p 推到方法就是利用利用错位相减法然后求lim - k ->无穷
D = (1-p)/p^2 推到方法利用了D(x) = E(x)^2-E(x^2),其中E(x^2)求解同上
几何分布可以参考:https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.geom.html#scipy.stats.geom
fig,ax = plt.subplots(1,1)
p = 0.5
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = geom.stats(p,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.arange(geom.ppf(0.01, p),geom.ppf(0.99, p))
ax.plot(x, geom.pmf(x, p),'o')
plt.title(u'几何分布概率质量函数')
plt.show()
因此,可以看到,对于抛硬币问题,抛个两三次就能成功。
4、泊松分布(X~P(λ))
描述单位时间/面积内,随机事件发生的次数。P(x = k) = λ^k/k!*e^(-λ) k = 0,1,2, ... λ >0
泊松分布可作为二项分布的极限而得到。一般的说,若 ,其中n很大,p很小,因而
不太大时,X的分布接近于泊松分布
。
λ:单位时间/面积下,随机事件的平均发生率
E = λ
D = λ
譬如:某一服务设施一定时间内到达的人数、一个月内机器损坏的次数等。
假设某地区,一年中发生枪击案的平均次数为2。
fig,ax = plt.subplots(1,1)
mu = 2
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = poisson.stats(mu,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.arange(poisson.ppf(0.01, mu),poisson.ppf(0.99, mu))
ax.plot(x, poisson.pmf(x, mu),'o')
plt.title(u'poisson分布概率质量函数')
plt.show()
因此,一年内的枪击案发生次数的分布如上所示。
与二项分布对比:
fig,ax = plt.subplots(1,1) n = 1000
p = 0.1
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = binom.stats(n,p,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.arange(binom.ppf(0.01, n, p),binom.ppf(0.99, n, p))
p1, = ax.plot(x, binom.pmf(x, n, p),'b*',label = 'binom') mu = n*p
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = poisson.stats(mu,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.arange(poisson.ppf(0.01, mu),poisson.ppf(0.99, mu))
p2, = ax.plot(x, poisson.pmf(x, mu),'ro',label = 'poisson') plt.legend(handles = [p1, p2])
plt.title(u'对比')
plt.show()
5、均匀分布(X~U(a,b))
对于随机变量x的概率密度函数:
则称随机变量X服从区间[a,b]上的均匀分布。
E = 0.5(a+b)
D = (b-a)^2 / 12
均匀分布在自然情况下极为罕见,而人工栽培的有一定株行距的植物群落即是均匀分布。这表明X落在[a,b]的子区间内的概率只与子区间长度有关,而与子区间位置无关,因此X落在[a,b]的长度相等的子区间内的可能性是相等的,所谓的均匀指的就是这种等可能性。
落在某一点的概率都是相同的
若[x1,x2]是[a,b]的任一子区间,则
P{x1≤x≤x2}=(x2-x1)/(b-a)
这表明X落在[a,b]的子区间内的概率只与子区间长度有关,而与子区间位置无关。
fig,ax = plt.subplots(1,1) loc = 1
scale = 1 #平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = uniform.stats(loc,scale,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.linspace(uniform.ppf(0.01,loc,scale),uniform.ppf(0.99,loc,scale),100)
ax.plot(x, uniform.pdf(x,loc,scale),'b-',label = 'uniform') plt.title(u'均匀分布概率密度函数')
plt.show()
6、指数分布X~ E(λ)
E = 1/λ
D = 1/λ^2
fig,ax = plt.subplots(1,1) lambdaUse = 2
loc = 0
scale = 1.0/lambdaUse #平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = expon.stats(loc,scale,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.linspace(expon.ppf(0.01,loc,scale),expon.ppf(0.99,loc,scale),100)
ax.plot(x, expon.pdf(x,loc,scale),'b-',label = 'expon') plt.title(u'指数分布概率密度函数')
plt.show()
指数分布通常用来表示随机事件发生的时间间隔,其中lambda和poisson分布的是一个概念(我认为),不知道为什么知乎上:https://www.zhihu.com/question/24796044,他们为啥说这俩不一样呢?我觉得这两种分布的期望肯定不一样啊,一个描述发生次数,一个描述两次的时间间隔,互为倒数也是应该的啊。
指数分布常用来表示旅客进机场的时间间隔、电子产品的寿命分布(需要高稳定的产品,现实中要考虑老化的问题)
指数分布的特性:无记忆性
比如灯泡的使用寿命服从指数分布,无论他已经使用多长一段时间,假设为s,只要还没有损坏,它能再使用一段时间t 的概率与一件新产品使用时间t 的概率一样。
这个证明过程简单表示:
P(s+t| s) = P(s+t , s)/P(s) = F(s+t)/F(s)=P(t)
7、正态分布(X~N(μ,σ^2))
E = μ
D = σ^2
正态分布是比较常见的,譬如学生考试成绩的人数分布等
fig,ax = plt.subplots(1,1) loc = 1
scale = 2.0
#平均值, 方差, 偏度, 峰度
mean,var,skew,kurt = norm.stats(loc,scale,moments='mvsk')
print mean,var,skew,kurt
#ppf:累积分布函数的反函数。q=0.01时,ppf就是p(X<x)=0.01时的x值。
x = np.linspace(norm.ppf(0.01,loc,scale),norm.ppf(0.99,loc,scale),100)
ax.plot(x, norm.pdf(x,loc,scale),'b-',label = 'norm') plt.title(u'正太分布概率密度函数')
plt.show()
补充:
大数定理:
随着样本的增加,样本的平均数将接近于总体的平均数,故推断中,一般会使用样本平均数估计总体平均数。
大数定律讲的是样本均值收敛到总体均值
中心极限定理:
独立同分布的事件,具有相同的期望和方差,则事件服从中心极限定理。他表示了对于抽取样本,n足够大的时候,样本分布符合x~N(μ,σ^2)
中心极限定理告诉我们,当样本量足够大时,样本均值的分布慢慢变成正态分布
概率论中常见分布总结以及python的scipy库使用:两点分布、二项分布、几何分布、泊松分布、均匀分布、指数分布、正态分布的更多相关文章
- Windows下使用命令安装Python的scipy库出错的解决
平时使用Python都是在Sublime下使用,不想使用IDE.使用各种库时安装也就是使用pip安装即可.来说说今天自己遇到的一个问题:使用scipy数学库时,使用命令: pip install sc ...
- python采用pika库使用rabbitmq总结,多篇笔记和示例
这一段时间学习了下rabbitmq,在学习的过程中,发现国内关于python采用pika库使用rabbitmq的资料很少,官网有这方面的资料,不过是都英文的.于是笔者结合自己的理解,就这方面内容写了一 ...
- python采用pika库使用rabbitmq总结,多篇笔记和示例(转)
add by zhj:作者的几篇文章参考了Rabbitmq的Tutorials中的几篇文章. 原文:http://www.01happy.com/python-pika-rabbitmq-summar ...
- Python数模笔记-Scipy库(1)线性规划问题
1.最优化问题建模 最优化问题的三要素是决策变量.目标函数和约束条件. (1)分析影响结果的因素是什么,确定决策变量 (2)决策变量与优化目标的关系是什么,确定目标函数 (3)决策变量所受的限制条件是 ...
- Python中常见字符串去除空格的方法总结
Python中常见字符串去除空格的方法总结 1:strip()方法,去除字符串开头或者结尾的空格>>> a = " a b c ">>> a.s ...
- python编程中常见错误
python编程培训中常见错误最后,我想谈谈使用更多python函数(数据类型.函数.模块.类等)时可能遇到的问题.由于篇幅有限,我们试图将其简化,特别是一些高级概念.有关更多详细信息,请阅读学习py ...
- Python中常见的异常总结
Python中常见的异常总结 当Python检测到一个错误时,解释器就会指出当前流已经无法继续执行下去,这时候就出现了异常. 一.异常错误 a.语法错误 错误一: if ...
- python中常见的错误
python中常见的错误 1.IndentationError: unindent does not match any outer indentation leve 众所周知,Python语法要 ...
- python中常见的报错信息
python中常见的报错信息 在运行程序时常会遇到报错提示,报错的信息会提示是哪个方向错的,从而帮助你定位问题: 搜集了一些python最重要的内建异常类名: AttributeError:属性错误, ...
随机推荐
- Django rest framwork-CMDB API实战
一.序列化 serializers.py from rest_framework import serializers from web_manage import models class Asse ...
- 简单对象List自定义属性排序
<body> <div> sort()对数组排序,不开辟新的内存,对原有数组元素进行调换 </div> <div id="showBox" ...
- 并行运行多个python虚拟机
之前遇到一个问题,需要将场景服务这个模块拆分出来,用独立的一个线程去执行.使用独立的线程好处就是,逻辑写的可以相对简单粗暴点,不必考虑到大量的场景服务逻辑卡主线程的情况. 由于我们服务器之前是使用py ...
- Linux内核抢占实现机制分析【转】
Linux内核抢占实现机制分析 转自:http://blog.chinaunix.net/uid-24227137-id-3050754.html [摘要]本文详解了Linux内核抢占实现机制.首先介 ...
- Django 基于类的视图(CBV)执行流程 CBV 源码分析
一.CBV(基于类的视图) 视图是可以调用的,它接受请求并返回响应,这不仅仅是一个函数,Django提供了一些可以用作视图的类的例子,这些允许您通过继承或mixin来构建视图并重用代码. 基本示例 D ...
- haproxy支持的负载均衡算法详解
目前haproxy支持的负载均衡算法有如下8种: 1.roundrobin 表示简单的轮询,每个服务器根据权重轮流使用,在服务器的处理时间平均分配的情况下这是最流畅和公平的算法.该算法是动态的,对于实 ...
- c语言格式控制符
http://zhidao.baidu.com/link?url=-YJjz3U0fd_eSW9eLa8ankGo_QbyOOOaKYWyAY9g4mKWQj0DN6l12OSLJz24U8jCwo1 ...
- github 优秀的开源项目
https://github.com/wlcaption/AndroidMarket---- 这是手机应用商店,包含应用的下载,用户中心等内容 https://github.com/wlcaption ...
- Python基础:内置常量
本文根据Python 3.6.5的官文Built-in Constants编写,官文比较短,大家可以直接看原文. 有一些存在于 内置名称空间(the built-in namespace) 的常量,如 ...
- Python解决八皇后问题的代码【解读】
八皇后问题 来自于西方象棋(现在叫 国际象棋,英文chess),详情可见百度百科. 在西方象棋中,有一种叫做皇后的棋子,在棋盘上,如果双方的皇后在同一行.同一列或同一斜线上,就会互相攻击. 八皇后问题 ...