题目链接

给出 \(n\) 个布丁,每个补丁都有其颜色。现在有 \(m\) 次操作,每次操作将第 \(x_i\) 种颜色全部变为第 \(y_i\) 种颜色。

操作中可能会插入询问,回答目前总共有多少段颜色。

$1 \leq n,m \leq 10^5 $

 

考虑稍微暴力点的做法,每次暴力修改颜色,然后如果对于当前的颜色,找到他们所有的位置,假设其中一个为 \(p\) ,那么通过判断 \(p-1,p+1\)位置的颜色是否为 \(y_i\) 即可。

如果这样做,就需要链表来寻找位置。但是这样还是要超时,复杂度可能为 \(O(n^2)\)。

在这里,可以使用启发式合并,即是每次把小范围并到大范围上去,由于小范围中的数每被并一次,范围中的数至少增大一倍,也就是说每个数最后被并 \(\log(n)\) 次,总的复杂度为 \(O(nlogn)\) 的。

但目前考虑到这里还不足以解决问题,因为题目给出的 “\(x_i,y_i\)”不一定满足 \(x_i<y_i\)。

这里的解决方法就是还是将小范围并到大范围,这里中间的判断操作是不影响的,唯一有变化的就是最终的颜色,我们用一个数组来记录一下最终的颜色就可以了。\(f[i]=j\) 的含义就为 \(i\) 颜色目前为颜色为 \(j\) 的链,然后每次找 \(f[i]\) 即可。数组可以解决很多事情~

具体见代码吧:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e6 + 5;
int n, m, ans;
int col[N], first[N], nxt[N], head[N], sz[N], f[N];
int now_c[N] ;
void merge(int x, int y) {
for(int i = head[x]; i; i = nxt[i])
ans -= (col[i - 1] == y) + (col[i + 1] == y);
for(int i = head[x]; i; i = nxt[i]) col[i] = y;
nxt[first[x]] = head[y];
head[y] = head[x];
sz[y] += sz[x]; sz[x] = 0; head[x] = 0;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0) ;
cin >> n >> m;
for(int i = 1; i <= n; i++) {
cin >> col[i] ;
f[col[i]] = col[i] ;
if(col[i] != col[i - 1]) ans++ ;
if(!head[col[i]]) first[col[i]] = i;
++sz[col[i]]; nxt[i] = head[col[i]]; head[col[i]] = i ;
}
for(int i = 1; i <= m; i++) {
int op, x, y;
cin >> op;
if(op == 2) cout << ans << '\n';
else {
cin >> x >> y ;
if(sz[f[x]] > sz[f[y]]) swap(f[x], f[y]) ;
if(sz[f[x]] == 0) continue ;
merge(f[x], f[y]) ;
}
}
return 0;
}

洛谷P3201 [HNOI2009]梦幻布丁(链表 + 启发式合并)的更多相关文章

  1. 洛谷P3201 [HNOI2009]梦幻布丁 [链表,启发式合并]

    题目传送门 梦幻布丁 题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入输 ...

  2. BZOJ 1483: [HNOI2009]梦幻布丁( 链表 + 启发式合并 )

    把相同颜色的串成一个链表, 然后每次A操作就启发式合并, 然后计算对答案的影响. ----------------------------------------------------------- ...

  3. 【BZOJ1483】[HNOI2009]梦幻布丁 链表+启发式合并

    [BZOJ1483][HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2 ...

  4. BZOJ 1483: [HNOI2009]梦幻布丁 [链表启发式合并]

    1483: [HNOI2009]梦幻布丁 题意:一个带颜色序列,一种颜色合并到另一种,询问有多少颜色段 一种颜色开一个链表,每次遍历小的合并到大的里,顺带维护答案 等等,合并方向有规定? 令col[x ...

  5. 洛谷 P3201 [HNOI2009]梦幻布丁(启发式合并)

    题面 luogu 题解 什么是启发式合并? 小的合并到大的上面 复杂度\(O(nlogn)\) 这题颜色的修改,即是两个序列的合并 考虑记录每个序列的\(size\) 小的合并到大的 存序列用链表 但 ...

  6. bzoj 1483: [HNOI2009]梦幻布丁 (链表启发式合并)

    Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色. 例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. Input ...

  7. 洛谷P3201 [HNOI2009]梦幻布丁

    题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入输出格式 输入格式: 第 ...

  8. bzoj1483: [HNOI2009]梦幻布丁(链表+启发式合并)

    题目大意:一个序列,两种操作. ①把其中的一种数修改成另一种数 ②询问有多少段不同的数如1 2 2 1为3段(1 / 2 2 / 1). 昨晚的BC的C题和这题很类似,于是现学现写居然过了十分开心. ...

  9. 洛谷 3201 [HNOI2009]梦幻布丁 解题报告

    3201 [HNOI2009]梦幻布丁 题目描述 \(N\)个布丁摆成一行,进行\(M\)次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为\(1,2,2 ...

随机推荐

  1. [linux] lsyncd同步工具

    环境说明: 192.168.56.101 同步源 192.168.56.102 同步目标 操作系统centos 7 lsyncd项目地址:https://github.com/axkibe/lsync ...

  2. 【quickhybrid】JS端的项目实现

    前言 API实现阶段之JS端的实现,重点描述这个项目的JS端都有些什么内容,是如何实现的. 不同于一般混合框架的只包含JSBridge部分的前端实现,本框架的前端实现包括JSBridge部分.多平台支 ...

  3. jaxb教程(忘记了过来看看)

    链接 原文链接

  4. 在虚拟机下安装Ubuntu

    目录: 1.安装虚拟机 2.在虚拟下安装Ubuntu 本文将按照目录分两步来讲一下在虚拟机下安装Ubuntu.第一步是安装虚拟机,第二步是在虚拟机下安装Ubuntu. 安装虚拟机 下载虚拟机链接以及激 ...

  5. selenium+python 自动化

    <a class="big_images_new" target="_blank" href="http://photo.xcar.com.cn ...

  6. Merge join、Hash join、Nested loop join对比分析

    简介 我们所常见的表与表之间的Inner Join,Outer Join都会被执行引擎根据所选的列,数据上是否有索引,所选数据的选择性转化为Loop Join,Merge Join,Hash Join ...

  7. Java 面试-- 1

    JAVA面试精选[Java基础第一部分]   这个系列面试题主要目的是帮助你拿轻松到offer,同时还能开个好价钱.只要能够搞明白这个系列的绝大多数题目,在面试过程中,你就能轻轻松松的把面试官给忽悠了 ...

  8. arcgis 10.3中文版安装教程、配置及常见问题(百度的有些错误)

    参考的: 1.http://wenku.baidu.com/link?url=W-wo_lEMvzHxF19w91X7H0WDjyCQ16DjGu4ViaZ4-eVPr0NTU-LrZTPK1oyzT ...

  9. 一个简单的加减乘除自动生成小程序(JAVA)

    在学习软件工程的时候,遇到一个这样的问题,一个程序员的儿子上小学二年级,老师让家长每天出30道加减题目给学生做,由于家长是个程序员,所以呢,他就自己写了个程序实现,我们可爱的老师于是也叫我们写了一个类 ...

  10. Week4-作业1:阅读与博客

    第四章.两人合作 1.原文: 在变量面前加上有意义的前缀,程序员就能一眼看出变量的类型及相应的语义.这就是“匈牙利命名法”的用处.还有一些地方不适合用“匈牙利命名法”,比如,在一些强类型的语言(如C# ...