2018ICPC南京网络赛

A. An Olympian Math Problem

题目描述:求\(\sum_{i=1}^{n} i\times i! \%n\)

solution

\[(n-1) \times (n-1)! \% n= (n-2)!(n^2-2n+1) \%n =(n-2)!
\]

\[(n-2+1)\times (n-2)! \% n= (n-3)!(n^2-3n+2) \%n =(n-3)! \times 2
\]

以此类推,最终只剩下\(n-1\)

时间复杂度:\(O(1)\)

B. The writing on the wall

题目描述:有一个\(n\times m\)的网格图,其中有些格子是黑色,其它都是白色,问不含黑色格子的矩形有多少个。

solution

先预处理出每个格子向右延伸的最长距离是多少,记作\(ri[i][j]\)。

对于每一列\(j\),将行按\(ri\)从大到小排序,按顺序插回去,用并查集维护连通块,当将第\(i\)行插回去是,\(i\)所在的连通块最长延伸距离为\(ri[i][j]\),为避免重复,只算跨过\(i\)这一行的贡献。

时间复杂度:\(O(n^3)\)

C. GDY

据说是比较坑的模拟题,队友做的。

D. Jerome's House

题目描述:在一个凸包内放三个半径为\(r\)的圆(圆可以相交),求圆心所形成的三角形的面积的最大值的两倍。

solution

将凸包的所有边向内移动\(r\),用半平面交求出之后的凸包,然后在凸包上求面积最大的三角形,枚举两个点,然后第三个点是单调的。

时间复杂度:\(O(n^2)\)

E. AC Challenge

裸状压\(dp\).

F. An Easy Problem On The Trees

G. Lpl and Energy-saving Lamps

裸线段树。

H. Set

题目描述:有\(n\)个点, 每个点有一个权值。\(m\)个操作,操作有三种:

  1. 给定\(u, v\),如果\(u, v\)不在同一个集合,那么将它们所在的集合合并
  2. 给定\(u\),将\(u\)所在集合的点的权值加一。
  3. 给定\(u, k, x\),求\(u\)所在集合的点的权值模\(2^k\)等于\(x\)的有多少。

solution

看到第三个操作,就会想到用\(trie\)来维护每个集合的数(越接近树根数位越低),操作一就是将两棵\(trie\)暴力合并,由于只有合并操作,因此每个点只会被合并一次,因此总的时间复杂度还是\(O(nlogn)\),对于操作二,可以在\(trie\)上面打标记,表示子树要加数,假设加的数为\(x\),若\(x\)为奇数,则本来该数位是\(0\)的数变成\(1\),\(1\)变成\(0\),并且要进位,即交换儿子,交换后儿子\(0\)的标记加一;若\(x\)为偶数,则直接把标记往下打即可,往下打得标记为\(x/2\).

时间复杂度:\(O((n+m)k)\)

#include <bits/stdc++.h>
using namespace std; const int maxn=int(6e5)+100; struct node
{
node *son[2];
int cnt;
int mark; node()
{
cnt=mark=0;
son[0]=son[1]=NULL;
} void down()
{
if (mark & 1) swap(son[0], son[1]);
if (son[0]) son[0]->mark+=(mark>>1)+(mark & 1);
if (son[1]) son[1]->mark+=(mark>>1);
mark=0;
}
}; node memory[maxn*31];
node *mem=memory;
int n, m;
int dsu[maxn];
node *trie[maxn]; void insert(node *cur, int v)
{
++cur->cnt;
for (int i=0; i<30; ++i, v>>=1)
{
if (!cur->son[v & 1]) cur->son[v & 1]=mem++;
cur=cur->son[v & 1];
++cur->cnt;
}
}
void read()
{
scanf("%d%d", &n, &m);
for (int i=1; i<=n; ++i) dsu[i]=-1;
for (int i=1; i<=n; ++i)
{
int v;
scanf("%d", &v);
trie[i]=mem++;
insert(trie[i], v);
}
}
int dsu_find(int cur)
{
return (dsu[cur]<0? cur:(dsu[cur]=dsu_find(dsu[cur])));
}
void dsu_merge(int &x, int &y)
{
if (dsu[x]>dsu[y]) swap(x, y);
dsu[x]+=dsu[y];
dsu[y]=x;
}
node *merge(node *x, node *y)
{
if (!x) return y;
if (!y) return x;
if (x->mark) x->down();
if (y->mark) y->down();
x->cnt+=y->cnt;
x->son[0]=merge(x->son[0], y->son[0]);
x->son[1]=merge(x->son[1], y->son[1]);
return x;
}
int ask(node *cur, int k, int x)
{
if (cur->mark) cur->down();
for (int i=0; i<k; ++i, x>>=1)
{
if (!cur->son[x & 1]) return 0;
cur=cur->son[x & 1];
if (cur->mark) cur->down();
}
return cur->cnt;
}
void solve()
{
for (int i=1; i<=m; ++i)
{
int type, u, v, x;
scanf("%d%d", &type, &u);
u=dsu_find(u);
switch (type)
{
case 1:
scanf("%d", &v);
v=dsu_find(v);
if (u==v) break;
dsu_merge(u, v);
trie[u]=merge(trie[u], trie[v]);
break;
case 2:
++trie[u]->mark;
break;
case 3:
scanf("%d%d", &v, &x);
printf("%d\n", ask(trie[u], v, x));
break;
}
}
}
int main()
{
read();
solve();
return 0;
}

I. Skr

题目描述:给定一个只含数字的字符串,求不同回文子串的和(子串所代表的数字的和)

solution

裸回文树。

J. Sum

题目描述:定义\(f(n)\)为\(n\)分解为两个非平方数乘积的方案数(有序数对),非平方数指的是没有平方数因子的数,\(1\)除外。问\(\sum_{i=1}^{n} f(i)\)

solution

将一个数\(n\)分解质因数,若某个质因子的幂大于\(2\),则\(f(n)=0\),因为无论怎么分,总有一个数会有两个该质因子;否则\(f(n)=2^{幂次为1的质因子的个数}\)。而这东西显然是积性函数,因此可以线性筛预处理。

时间复杂度:\(O(n)\)

K. The Great Nim Game

题目描述:有\(n\)堆石子,每堆石子的个数为\(f(n)\),一开始可以移走若干堆石子,使得在剩下的石子堆中玩\(Nim\)游戏先手必胜,问移走石子堆的方案数。

solution

如果直接给出每堆石子的个数,那这题就很简单了,就是算使得剩下的数异或值不为\(0\)即可,这个可以用状压\(dp\)。但这道题的\(n\)很大,\(f(n)\)是由递推式给出的。观察式子可知\(f(n)\)有一个长度为\(k\)的循环,因此可以算出每种数字有多少个,只是要用高精度表示而已,每种数字选奇数个或偶数个,因此方案数是\(2^{个数-1}\),因为个数很大,所以要用欧拉定理降幂。

时间复杂度:\(O(n+2^kk)\)

L. Magical Girl Haze

题目描述:有一个\(n\)个点\(m\)条边的图,现在可以将不多于\(k\)条边的权值变成\(0\),求\(1\)到\(n\)的最短路径。

solution

拆点,将一个点拆成\(k+1\)个,表示已经变了多少条边。然后用\(dijkstra\)才能过。(好像\(SPFA+SLF\)优化也可以)

时间复杂度:\(O(mlog(nk))\)

2018ICPC南京网络赛的更多相关文章

  1. 2018icpc南京网络赛-E AC Challenge(状压+dfs)

    题意: n道题,每道题有ai和bi,完成这道题需要先完成若干道题,完成这道题可以得到分数t*ai+bi,其中t是时间 1s, n<=20 思路: 由n的范围状压,状态最多1e6 然后dfs,注意 ...

  2. 2018icpc南京网络赛-L Magical Girl Haze (分层图最短路)

    题意: 有向图,可以把k条路的长度变为0,求1到n的最短路 思路: 将图复制k份,一共k+1层图,对于每一条i→j,都连一条低层的i→高层的j,并且权值为0 即对每一对<i,j,w>,都加 ...

  3. HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)

    Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  4. HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)

    Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others ...

  5. HDU 4758 Walk Through Squares (2013南京网络赛1011题,AC自动机+DP)

    Walk Through Squares Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Oth ...

  6. 2019ICPC南京网络赛A题 The beautiful values of the palace(三维偏序)

    2019ICPC南京网络赛A题 The beautiful values of the palace https://nanti.jisuanke.com/t/41298 Here is a squa ...

  7. 2019 南京网络赛A

    南京网络赛自闭现场 https://nanti.jisuanke.com/t/41298 二维偏序经典题型 二维前缀和!!! #include<bits/stdc++.h> using n ...

  8. 计蒜客 2018南京网络赛 I Skr ( 回文树 )

    题目链接 题意 : 给出一个由数字组成的字符串.然后要你找出其所有本质不同的回文子串.然后将这些回文子串转化为整数后相加.问你最后的结果是多少.答案模 1e9+7 分析 : 应该可以算是回文树挺裸的题 ...

  9. 南京网络赛B-The writing on the wall

    30.43% 2000ms 262144K Feeling hungry, a cute hamster decides to order some take-away food (like frie ...

随机推荐

  1. Redis学习 - 主从拷贝

    Redis主从拷贝的特点 同一个Master可以拥有多个Slaves. Master下的Slave还可以接受同一架构中其它slave的链接与同步请求,实现数据的级联复制,即Master->Sla ...

  2. 利用java实现可远程执行linux命令的小工具

    在linux的脚本中,如果不对机器做其他的处理,不能实现在linux的机器上执行命令.为了解决这个问题,写了个小工具来解决这个问题. 后面的代码是利用java实现的可远程执行linux命令的小工具,代 ...

  3. 【hdu3555】 Bomb

    http://acm.hdu.edu.cn/showproblem.php?pid=3555 (题目链接) 题意 求区间${[1,n]}$含有49的数的个数. Solution 数位dp,先求出不含4 ...

  4. Linux内核设计与实现第十周读书笔记

    第十七章 设备与模块 关于设备驱动与设备管理,我们讨论四种内核成分. 设备类型 模块 内核对象 sysfs 17.1设备类型 在Linux以及所有Unix系统中,设备被分为以下三种类型: 块设备,块设 ...

  5. 单点登录(十四)-----实战-----cas5.0.x登录mongodb验证方式常规的四种加密的思考和分析

    我们在上一篇文章中已经讲解了cas4.2.X登录启用mongodb验证方式 单点登录(十三)-----实战-----cas4.2.X登录启用mongodb验证方式完整流程 但是密码是明文存储的,也就是 ...

  6. Android Studio怎么文件添加到收藏和打开收藏夹

    http://jingyan.baidu.com/article/1709ad809e608b4634c4f0b9.html 在使用Android studio编写的代码的过程中,有时会碰到有一些文件 ...

  7. linux tmux命令小结

    http://note.youdao.com/noteshare?id=f1be507b4be27e53684b46a1424746b5

  8. Python 类编码风格

    1.命名 类名:(1)单词首字母均大写 (2)不使用下划线 实例名+模块名:(1)小写格式 (2)下划线分隔单词 2.文档字符串 三引号:“““ ””” 每个类定义后面需要包含一个文档字符串,描述类的 ...

  9. Docker生产实践(六)

    镜像构建思路 思路:分层设计 最底层:系统层,构建自己适用的不同操作系统镜像: 中间层:根据运行环境,如php.java.python等,构建业务基础运行环境层镜像: 最上层:根据具体的业务模块,构建 ...

  10. P2054 [AHOI2005]洗牌

    P2054 [AHOI2005]洗牌 题目描述 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度 ...