ROS + Caffe,这里以环境中物体识别为示例,机器人怎么知道环境里面有什么呢?

[0.0567392 - n03376595 folding chair]
[0.0566773 - n04099969 rocking chair, rocker]

[0.236507 - n04239074 sliding door]

[0.477623 - n03832673 notebook, notebook computer]

[0.233582 - n03180011 desktop computer]

caffe在ros中主题以概率方式推断物品,比如椅子,门和笔记本电脑。

如何实现?

首先,需要安装Berkeley Vision and Learning Center (BVLC) 的Caffe,在ubuntu 14.04 16.04上网上教程很多,

这里就不多说,只列出核心步骤:

最重要的就是看官网说明!!!----http://caffe.berkeleyvision.org/

$ sudo apt-get install libatlas-dev libatlas-base-dev

$ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

$ sudo apt-get install --no-install-recommends libboost-all-dev

$ sudo apt-get install libboost-all-dev

$ sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

在github下载最新版caffe:https://github.com/BVLC/caffe

注意库要配置好!可以支持opencv2和opencv3,但是如果配置不正确,呵呵,想象一下,编译和运行错乱是什么结果呢?

简单回答:Segmentation fault (core dump) !用opencv3编译,运行用opencv2,必然挂掉。CUDA ATLAS OpenCV等。

编译比较简单,测试也一般不会出问题。

cp Makefile.config.example Makefile.config
# Adjust Makefile.config (for example, if using Anaconda Python, or if cuDNN is desired)
make all
make test
make runtest

注意,如果只使用CPU,需要修改Makefile.config如下:

cd [CATKIN_WS]/src/ros_caffe/caffe
cp Makefile.config.example Makefile.config
$ vi Makefile.config
For CPU-only Caffe, uncomment CPU_ONLY := 1 in Makefile.config.
$ make all ; make install

编译完成后,测试一下;-) make runtest

ros_caffe示例:https://github.com/tzutalin/ros_caffe

注意caffe库位置:修改Caffe's include and lib 路径 in CMakeLists.txt。

set(CAFFE_INCLUDEDIR caffe/include caffe/install/include)
set(CAFFE_LINK_LIBRARAY caffe/lib)

$ cd [CATKIN_WS]
$ catkin_make
$ source ./devel/setup.bash

出错依据报错信息查找问题。ok,编译工作全部完成。

下载模型之后,直接在分别在终端运行:

$ roscore

$ roslaunch turtlebot_bringup 3dsensor.launch

$ roslaunch astra_launch astra.launch

$ rosrun ros_caffe ros_caffe_test

如果出现:

  

ok,全部完成。可以使用并出现识别结果。

ROS Topics
Publish a topic after classifiction:
/caffe_ret
Receive an image :
/camera/rgb/image_raw

Classifier.h

#ifndef CLASSIFIER_H
#define CLASSIFIER_H

#include <iostream>
#include <vector>
#include <sstream>
#include <caffe/caffe.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace caffe;
using std::string;

/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;

class Classifier {
    public:
        Classifier(const string& model_file,
                   const string& trained_file,
                   const string& mean_file,
                   const string& label_file);

        std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);

    private:
        void SetMean(const string& mean_file);

        std::vector<float> Predict(const cv::Mat& img);

        void WrapInputLayer(std::vector<cv::Mat>* input_channels);

        void Preprocess(const cv::Mat& img,
                        std::vector<cv::Mat>* input_channels);

    private:
        shared_ptr<Net<float> > net_;
        cv::Size input_geometry_;
        int num_channels_;
        cv::Mat mean_;
        std::vector<string> labels_;
};

Classifier::Classifier(const string& model_file,
                       const string& trained_file,
                       const string& mean_file,
                       const string& label_file) {
#ifdef CPU_ONLY
    Caffe::set_mode(Caffe::CPU);
#else
    Caffe::set_mode(Caffe::GPU);
#endif

    /* Load the network. */
    net_.reset(new Net<float>(model_file, TEST));
    net_->CopyTrainedLayersFrom(trained_file);

    Blob<float>* input_layer = net_->input_blobs()[0];
    num_channels_ = input_layer->channels();

    input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

    /* Load the binaryproto mean file. */
    SetMean(mean_file);

    /* Load labels. */
    std::ifstream labels(label_file.c_str());
    string line;
    while (std::getline(labels, line))
        labels_.push_back(string(line));

    Blob<float>* output_layer = net_->output_blobs()[0];
}

static bool PairCompare(const std::pair<float, int>& lhs,
                        const std::pair<float, int>& rhs) {
    return lhs.first > rhs.first;
}

/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
    std::vector<std::pair<float, int> > pairs;
    for (size_t i = 0; i < v.size(); ++i)
        pairs.push_back(std::make_pair(v[i], i));
    std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

    std::vector<int> result;
    for (int i = 0; i < N; ++i)
        result.push_back(pairs[i].second);
    return result;
}

/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
    std::vector<float> output = Predict(img);

    std::vector<int> maxN = Argmax(output, N);
    std::vector<Prediction> predictions;
    for (int i = 0; i < N; ++i) {
        int idx = maxN[i];
        predictions.push_back(std::make_pair(labels_[idx], output[idx]));
    }

    return predictions;
}

/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
    BlobProto blob_proto;
    ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

    /* Convert from BlobProto to Blob<float> */
    Blob<float> mean_blob;
    mean_blob.FromProto(blob_proto);

    /* The format of the mean file is planar 32-bit float BGR or grayscale. */
    std::vector<cv::Mat> channels;
    float* data = mean_blob.mutable_cpu_data();
    for (int i = 0; i < num_channels_; ++i) {
        /* Extract an individual channel. */
        cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
        channels.push_back(channel);
        data += mean_blob.height() * mean_blob.width();
    }

    /* Merge the separate channels into a single image. */
    cv::Mat mean;
    cv::merge(channels, mean);

    /* Compute the global mean pixel value and create a mean image
     * filled with this value. */
    cv::Scalar channel_mean = cv::mean(mean);
    mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}

std::vector<float> Classifier::Predict(const cv::Mat& img) {
    Blob<float>* input_layer = net_->input_blobs()[0];
    input_layer->Reshape(1, num_channels_,
                         input_geometry_.height, input_geometry_.width);
    /* Forward dimension change to all layers. */
    net_->Reshape();

    std::vector<cv::Mat> input_channels;
    WrapInputLayer(&input_channels);

    Preprocess(img, &input_channels);

    net_->ForwardPrefilled();

    /* Copy the output layer to a std::vector */
    Blob<float>* output_layer = net_->output_blobs()[0];
    const float* begin = output_layer->cpu_data();
    const float* end = begin + output_layer->channels();
    return std::vector<float>(begin, end);
}

/* Wrap the input layer of the network in separate cv::Mat objects
 * (one per channel). This way we save one memcpy operation and we
 * don't need to rely on cudaMemcpy2D. The last preprocessing
 * operation will write the separate channels directly to the input
 * layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
    Blob<float>* input_layer = net_->input_blobs()[0];

    int width = input_layer->width();
    int height = input_layer->height();
    float* input_data = input_layer->mutable_cpu_data();
    for (int i = 0; i < input_layer->channels(); ++i) {
        cv::Mat channel(height, width, CV_32FC1, input_data);
        input_channels->push_back(channel);
        input_data += width * height;
    }
}

void Classifier::Preprocess(const cv::Mat& img,
                            std::vector<cv::Mat>* input_channels) {
    /* Convert the input image to the input image format of the network. */
    cv::Mat sample;
    if (img.channels() == 3 && num_channels_ == 1)
        cv::cvtColor(img, sample, CV_BGR2GRAY);
    else if (img.channels() == 4 && num_channels_ == 1)
        cv::cvtColor(img, sample, CV_BGRA2GRAY);
    else if (img.channels() == 4 && num_channels_ == 3)
        cv::cvtColor(img, sample, CV_BGRA2BGR);
    else if (img.channels() == 1 && num_channels_ == 3)
        cv::cvtColor(img, sample, CV_GRAY2BGR);
    else
        sample = img;

    cv::Mat sample_resized;
    if (sample.size() != input_geometry_)
        cv::resize(sample, sample_resized, input_geometry_);
    else
        sample_resized = sample;

    cv::Mat sample_float;
    if (num_channels_ == 3)
        sample_resized.convertTo(sample_float, CV_32FC3);
    else
        sample_resized.convertTo(sample_float, CV_32FC1);

    cv::Mat sample_normalized;
    cv::subtract(sample_float, mean_, sample_normalized);

    /* This operation will write the separate BGR planes directly to the
     * input layer of the network because it is wrapped by the cv::Mat
     * objects in input_channels. */
    cv::split(sample_normalized, *input_channels);
}

#endif

ros_caffe_test.cpp

#include <ros/ros.h>
#include <ros/package.h>
#include <std_msgs/String.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include "Classifier.h"

const std::string RECEIVE_IMG_TOPIC_NAME = "camera/rgb/image_raw";
const std::string PUBLISH_RET_TOPIC_NAME = "/caffe_ret";

Classifier* classifier;
std::string model_path;
std::string weights_path;
std::string mean_file;
std::string label_file;
std::string image_path;

ros::Publisher gPublisher;

void publishRet(const std::vector<Prediction>& predictions);

void imageCallback(const sensor_msgs::ImageConstPtr& msg) {
    try {
        cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy(msg, "bgr8");
        //cv::imwrite("rgb.png", cv_ptr->image);
		cv::Mat img = cv_ptr->image;
		std::vector<Prediction> predictions = classifier->Classify(img);
		publishRet(predictions);
    } catch (cv_bridge::Exception& e) {
        ROS_ERROR("Could not convert from '%s' to 'bgr8'.", msg->encoding.c_str());
    }
}

// TODO: Define a msg or create a service
// Try to receive : $rostopic echo /caffe_ret
void publishRet(const std::vector<Prediction>& predictions)  {
    std_msgs::String msg;
    std::stringstream ss;
    for (size_t i = 0; i < predictions.size(); ++i) {
        Prediction p = predictions[i];
        ss << "[" << p.second << " - " << p.first << "]" << std::endl;
    }
    msg.data = ss.str();
    gPublisher.publish(msg);
}

int main(int argc, char **argv) {
    ros::init(argc, argv, "ros_caffe_test");
    ros::NodeHandle nh;
    image_transport::ImageTransport it(nh);
    // To receive an image from the topic, PUBLISH_RET_TOPIC_NAME
    image_transport::Subscriber sub = it.subscribe(RECEIVE_IMG_TOPIC_NAME, 1, imageCallback);
	gPublisher = nh.advertise<std_msgs::String>(PUBLISH_RET_TOPIC_NAME, 100);
    const std::string ROOT_SAMPLE = ros::package::getPath("ros_caffe");
    model_path = ROOT_SAMPLE + "/data/deploy.prototxt";
    weights_path = ROOT_SAMPLE + "/data/bvlc_reference_caffenet.caffemodel";
    mean_file = ROOT_SAMPLE + "/data/imagenet_mean.binaryproto";
    label_file = ROOT_SAMPLE + "/data/synset_words.txt";
    image_path = ROOT_SAMPLE + "/data/cat.jpg";

    classifier = new Classifier(model_path, weights_path, mean_file, label_file);

    // Test data/cat.jpg
    cv::Mat img = cv::imread(image_path, -1);
    std::vector<Prediction> predictions = classifier->Classify(img);
    /* Print the top N predictions. */
    std::cout << "Test default image under /data/cat.jpg" << std::endl;
    for (size_t i = 0; i < predictions.size(); ++i) {
        Prediction p = predictions[i];
        std::cout << std::fixed << std::setprecision(4) << p.second << " - \"" << p.first << "\"" << std::endl;
    }
	publishRet(predictions);

    ros::spin();
    delete classifier;
    ros::shutdown();
    return 0;
}

问题汇总:一般哪有那么顺利~~

I0122 16:50:22.870820 20921 upgrade_proto.cpp:44] Attempting to upgrade input file specified using deprecated transformation parameters: /home/exbot/Rob_Soft/caffe/src/ros_caffe-master/data/bvlc_reference_caffenet.caffemodel
I0122 16:50:22.870877 20921 upgrade_proto.cpp:47] Successfully upgraded file specified using deprecated data transformation parameters.
W0122 16:50:22.870887 20921 upgrade_proto.cpp:49] Note that future Caffe releases will only support transform_param messages for transformation fields.
I0122 16:50:22.870893 20921 upgrade_proto.cpp:53] Attempting to upgrade input file specified using deprecated V1LayerParameter: /home/exbot/Rob_Soft/caffe/src/ros_caffe-master/data/bvlc_reference_caffenet.caffemodel
I0122 16:50:23.219712 20921 upgrade_proto.cpp:61] Successfully upgraded file specified using deprecated V1LayerParameter
I0122 16:50:23.221462 20921 net.cpp:746] Ignoring source layer data
I0122 16:50:23.316156 20921 net.cpp:746] Ignoring source layer loss
Segmentation fault (core dumped)

如果出现,这是需要调试ROS节点,使用gdb:

$ ulimit -a

$ ulimit -c unlimited

$ echo 1 | sudo tee /proc/sys/kernel/core_uses_pid

如果查看出错信息:

$ gdb ros_caffe_test core.20921

GNU gdb (Ubuntu 7.7.1-0ubuntu5~14.04.2) 7.7.1
Copyright (C) 2014 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ros_caffe_test...(no debugging symbols found)...done.
[New LWP 20921]
[New LWP 20934]
[New LWP 20933]
[New LWP 20939]
[New LWP 20932]
[New LWP 20930]
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Core was generated by `/home/exbot/Rob_Soft/caffe/devel/lib/ros_caffe/ros_caffe_test'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0  0x00007fc51da27e0c in cv::merge(cv::_InputArray const&, cv::_OutputArray const&) ()
   from /usr/lib/x86_64-linux-gnu/libopencv_core.so.2.4
(gdb)

基本推断,是opencv库乱了,调整环境变量指定。

ROS + Caffe 机器人操作系统框架和深度学习框架笔记 (機器人控制與人工智能)的更多相关文章

  1. 深度学习框架-caffe安装-环境[Mac OSX 10.12]

    深度学习框架-caffe安装 [Mac OSX 10.12] [参考资源] 1.英文原文:(使用GPU) [http://hoondy.com/2015/04/03/how-to-install-ca ...

  2. 深度学习框架-caffe安装-Mac OSX 10.12

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 ...

  3. 转:TensorFlow和Caffe、MXNet、Keras等其他深度学习框架的对比

    http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自Tens ...

  4. [转]Caffe 深度学习框架上手教程

    Caffe 深度学习框架上手教程 机器学习Caffe caffe 原文地址:http://suanfazu.com/t/caffe/281   blink 15年1月 6   Caffe448是一个清 ...

  5. Caffe 深度学习框架介绍

    转自:http://suanfazu.com/t/caffe/281 Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清,目前在Google工作. Caffe是 ...

  6. 贾扬清分享_深度学习框架caffe

    Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...

  7. 深度学习框架Caffe的编译安装

    深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最 ...

  8. ROS(indigo)机器人操作系统学习有趣丰富的Gazebo仿真示例evarobot

    一直在寻找一个示例可以将ROS学习中常用的基础内容大部分都包含进去,最好还包括Gazebo仿真, 这样即使没有硬件设备,也可以很好的学习ROS相关内容,但又必须有对应的硬件,便于后续研究. 这里,介绍 ...

  9. ROS(indigo)机器人操作系统学习资料和常用功能包汇总整理(ubuntu14.04LTS)

    ROS(indigo)机器人操作系统学习资料和常用功能包汇总整理(ubuntu14.04LTS) 1. 网站资源: ROSwiki官网:http://wiki.ros.org/cn GitHub    ...

随机推荐

  1. [JSOI2009] 球队收益 (费用流)

    终于来发题解啦! pdf版题解 #include<iostream> #include<cstring> #include<cstdio> #include< ...

  2. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  3. struts2的MVC模式

    MVC是一种架构型模式,它本身并不引入新的功能,只是用来指导我们改善应用程序的架构,使得应用的模型和视图相分离,从而得到更好的开发和维护效率. 在MVC模式中,应用程序被划分成了模型(Model).视 ...

  4. Python常见初级错误

    一.常见错误(编辑器:Geany) 1.错误原因:或因不兼容中文注释 2.错误原因:vehicles变量前面有多余的空格 3.错误原因:没有正确的缩进(indent)

  5. Unmanaged Exports生成Dll时的一些疑难杂症疗法

    Unmanaged Exports是一个将.NET编写的静态托管函数导出成可供C/C++等直接调用的非托管函数的工具. 已经在上篇文章介绍过了,这里不再复述. 限制 你不能导出在同一个class中的重 ...

  6. Consul 服务发现与配置

    Consule 是什么 Consul包含多个组件,但是作为一个整体,为你的基础设施提供服务发现和服务配置的工具.他提供以下关键特性: 服务发现 Consul 的客户端可用提供一个服务,比如 api 或 ...

  7. Java基础-DBCP连接池(BasicDataSource类)详解

    Java基础-DBCP连接池(BasicDataSource类)详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 实际开发中“获得连接”或“释放资源”是非常消耗系统资源的两个过程 ...

  8. Python 豆瓣顶帖

    由于在豆瓣发了个租房帖子,发现很快就被其他的帖子淹没,但是手动顶帖实在太累,

  9. Django rest framwork

    Restful API REST与技术无关,代表的是一种软件架构风格,REST是Representational State Transfer的简称,中文翻译为“表征状态转移” REST从资源的角度类 ...

  10. Python练习-面向过程编程-模拟Grep命令

    其实这个面向过程编写程序,是编写程序的基础,所以一定要好好掌握 此程序涉及知识点:装饰器,生成器,协程器应用 # 编辑者:闫龙 import os Distinct = [] #定义一个列表用于判断重 ...