[luogu3941] 入阵曲
题面
话说题目前面的那首诗还挺有意境的啊哈哈.
可能今天要把中文的标点都换成英文的了, 先熟悉一下吧...
好了, 进入正题, 求一个矩阵内有多少个子矩阵满足这个子矩阵的和模k为零.看到矩阵和啊, 第一感觉就是前缀和数组,在这里便是二维前缀和, 有这样一个算式:
\]
这个算式是怎样推出来的呢, 请大家自行画图解决, 应该是很好理解的.
二维前缀和算出来了之后, 我们可以枚举x1, x2, y1, y2, 不妨令x1 <= x2, y1 <= y2, 则有这样一个算式, 矩阵和为:
\]
这样的时间复杂度为:
\]
这肯定会爆, 考虑优化, 首先, 前缀和还是要留着的, 那我们需要怎么做呢, 思考5S...
好了, 考虑压行, 我们知道两个模k同余的数相减模k必为0, 所以我们可以枚举子矩阵的上下两行或者左右两列, 在这里以上下两行为列, 从左往右枚举列, 将模k同余的数放进一个数组中保存, 每次新列加上与他同余的数的个数就是上下两行为枚举的i, j, 右边一列为枚举的k的子矩阵模k为零的个数, 好了, 具体实现在注释中会提到.
现在的时间复杂度已经被优化到了:
\]
代码实现
#include <iostream>
#include <cstdio>
using namespace std;
int n, m, K, mapp[405][405], cnt[1000005], b[405];
long long ans; //对于答案需要统计的问题, 开成longlong比较保险
inline int read()
{
int x = 0, w = 1;
char c = getchar();
while(c < '0' || c > '9') { if (c == '-') w = -1; c = getchar(); }
while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
return x * w;
}
int main()
{
// freopen("rally.in", "r", stdin);
// freopen("rally.out", "w", stdout);
n = read(); m = read(); K = read();
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
mapp[i][j] = read();
(mapp[i][j] += mapp[i - 1][j] + mapp[i][j - 1] + K - mapp[i - 1][j - 1]) %= K;
}
for(int i = 0; i < n; i++)
for(int j = i + 1; j <= n; j++)
{
cnt[0] = 1;//模k为0的子矩阵初始有1个, 如果第k个矩阵本身模k就为零了,减去一个空的事实上不存在的矩阵不还是等于零吗, 因为有一个前缀和, 事实上是sum[r] - sum[l - 1]嘛, 不就相当于sum[-1] % k == 0
for(int k = 1; k <= m; k++) ans += cnt[(b[k] = (mapp[j][k] - mapp[i][k] + K)) %= K]++; //b[k]统计的是第k列为右边界,第0列为左边界的子矩阵模k的值, 这样清零就只有O(m)了, 不然由于模数比较大, memset肯定会超时, 这里需要注意一下, 还有, 这个地方的写法比较玄学, 其实可以写成以下形式:
/*
for(int k = 1; k <= m; k++)
{
b[k] = (mapp[j][k] - mapp[i][k] + K) % K;
ans += cnt[b[k]];
cnt[b[k]]++;
}
*/
for(int k = 1; k <= m; k++) cnt[b[k]] = 0;
}
printf("%lld\n", ans);
return 0;
}
完
[luogu3941] 入阵曲的更多相关文章
- luogu3941入阵曲
https://www.zybuluo.com/ysner/note/1301562 题面 统计在给出的\(n*m\)矩阵中,有多少个不同的子矩形中的数字之和是\(k\)的倍数? 解析 切不掉这道题是 ...
- 【题解】入阵曲 luogu3941 前缀和 压维
丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂 题目 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时 ...
- 洛谷P3941入阵曲
题目传送门 这道题也是今年湖南集训队Day8的第一题,昨天洛谷的公开赛上又考了一遍,来发个记录(其实是因为五月天,另外两道题分别是将军令和星空,出这次题目的人肯定同为五迷(✪㉨✪)) 话不多说.先理解 ...
- P3941 入阵曲
\(\color{#0066ff}{ 题目描述 }\) 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整 ...
- Luogu P3941 入阵曲【前缀和】By cellur925
题目传送门 题目大意:给你一个\(n\)*\(m\)的矩阵,每个位置都有一个数,求有多少不同的子矩阵使得矩阵内所有数的和是\(k\)的倍数. 数据范围给的非常友好233,期望得到的暴力分:75分.前1 ...
- [洛谷P3941] 入阵曲
题目背景 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 入阵曲 题解在代码里. #include<iostream> #include<cstdio> #include& ...
- 落谷P3941 入阵曲
题目背景 pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 题目描述 小 F 很喜欢数学,但是到 ...
- 8.11 NOIP模拟测试17 入阵曲+将军令+星空
T1 入阵曲 前缀和维护可以得60分 f[x1][y1][x2][y2]=sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1]; O(n4) ...
- [洛谷P3941]:入阵曲(前缀和+桶)
题目传送门 题目背景 丹青千秋酿,一醉解愁肠.无悔少年枉,只愿壮志狂. 题目描述 小$F$很喜欢数学,但是到了高中以后数学总是考不好.有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识 ...
随机推荐
- SpringBoot(四) Core Features: Logging
参考 文档: 26. Logging
- mybatis自动生成代码,逆向工程
https://gitee.com/yangliuwin/mybatis_reverse_engineering.git
- Ubuntu双系统环境下隐藏掉其他开机启动项
系统环境:ubuntu16.04需求:PC装的双系统(ubuntu+win10),为了应对某些需求,需要将win10系统给从电脑上消失,让你看不见也进不去它.做法:当然不可能真的删除掉win10系统, ...
- js-权威指南学习笔记15.2
1.读取Element的innerHTML属性作为字符串标记返回那个元素的内容. 2.当设置元素的outerHTML时,元素本身被新的内容所替换.只有Element节点定义了outerHTML属性,D ...
- ASP.NET SignalR-B.S/C.S 相互打通DEMO
ASP .NET SignalR 是一个ASP .NET 下的类库,可以在ASP .NET 的Web项目中实现实时通信. 什么是实时通信的Web呢?就是让客户端(Web页面)和服务器端可以互相通知 ...
- CIO在数字化转型中如何正确定位?
在数字化转型的大潮下,CIO和传统企业应如何抓住数字生态系统中的机遇?CIO该如何面对领导力.资金.技术和人才的挑战? Gartner研究总监陈勇表示:IT部门在企业中应转变成为一个引领创新的部门,C ...
- 玩转Android拍摄功能
简单拍照与摄像 在富媒体开始流行之前,整个世界是一个灰暗且平淡无奇的地方.还记得Gopher吗?我或许不记得了.自从APP成为用户生活的一部分之后,这便给他们提供了一种方式可以来存放他们生活的细节.使 ...
- Oracle EBS 多节点停应用
adstpall.sh -mode=allnodes app/apps
- webkit、cef、nwjs、electron、 miniblink浏览器内核优缺点
市面上作为嵌入的组件的可用的浏览器内核,不外乎这几个:webkit.cef.nwjs.electron. 1.cef:优点是由于集成的chromium内核,所以对H5支持的很全,同时因为使用的人也多, ...
- mysql性能优化-慢查询分析、优化索引和配置 (慢查询日志,explain,profile)
mysql性能优化-慢查询分析.优化索引和配置 (慢查询日志,explain,profile) 一.优化概述 二.查询与索引优化分析 1性能瓶颈定位 Show命令 慢查询日志 explain分析查询 ...