Distinct Substrings SPOJ - DISUBSTR(后缀数组水题)
求不重复的子串个数
用所有的减去height就好了 推出来的。。。
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; char a[maxn];
int s[maxn];
int sa[maxn], t[maxn], t2[maxn], c[maxn], n;
int ran[maxn], height[maxn]; void get_sa(int m)
{
int i, *x = t, *y = t2;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[i] = s[i]]++;
for(i = ; i < m; i++) c[i] += c[i-];
for(i = n-; i >= ; i--) sa[--c[x[i]]] = i;
for(int k = ; k <= n; k <<= )
{
int p = ;
for(i = n-k; i < n; i++) y[p++] = i;
for(i = ; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[y[i]]]++;
for(i = ; i< m; i++) c[i] += c[i-];
for(i = n-; i >= ; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = ; x[sa[]] = ;
for(i = ; i < n; i++)
x[sa[i]] = y[sa[i-]] == y[sa[i]] && y[sa[i-]+k] == y[sa[i]+k] ? p- : p++;
if(p >= n) break;
m = p;
}
int k = ;
for(i = ; i < n; i++) ran[sa[i]] = i;
for(i = ; i < n; i++)
{
if(k) k--;
int j = sa[ran[i]-];
while(s[i+k] == s[j+k]) k++;
height[ran[i]] = k;
}
} int main()
{
int T;
rd(T);
while(T--)
{
rs(a);
n = strlen(a);
rep(i, , n)
s[i] = a[i];
int sum = n*(n+)/;
s[n++] = ;
get_sa();
rep(i, , n)
sum -= height[i];
cout<< sum <<endl; } return ;
}
Distinct Substrings SPOJ - DISUBSTR(后缀数组水题)的更多相关文章
- Distinct Substrings SPOJ - DISUBSTR 后缀数组
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- Spoj-DISUBSTR - Distinct Substrings~New Distinct Substrings SPOJ - SUBST1~(后缀数组求解子串个数)
Spoj-DISUBSTR - Distinct Substrings New Distinct Substrings SPOJ - SUBST1 我是根据kuangbin的后缀数组专题来的 这两题题 ...
- 705. New Distinct Substrings spoj(后缀数组求所有不同子串)
705. New Distinct Substrings Problem code: SUBST1 Given a string, we need to find the total number o ...
- SPOJ DISUBSTR ——后缀数组
[题目分析] 后缀数组模板题. 由于height数组存在RMQ的性质. 那么对于一个后缀,与前面相同的串总共有h[i]+sa[i]个.然后求和即可. [代码](模板来自Claris,这个板子太漂亮了) ...
- SPOJ DISUBSTR 后缀数组
题目链接:http://www.spoj.com/problems/DISUBSTR/en/ 题意:给定一个字符串,求不相同的子串个数. 思路:直接根据09年oi论文<<后缀数组——出来字 ...
- [spoj DISUBSTR]后缀数组统计不同子串个数
题目链接:https://vjudge.net/contest/70655#problem/C 后缀数组的又一神奇应用.不同子串的个数,实际上就是所有后缀的不同前缀的个数. 考虑所有的后缀按照rank ...
- poj2774(后缀数组水题)
http://poj.org/problem?id=2774 题意:给你两串字符,要你找出在这两串字符中都出现过的最长子串......... 思路:先用个分隔符将两个字符串连接起来,再用后缀数组求出h ...
- BZOJ 1031 [JSOI2007]字符加密Cipher | 后缀数组模板题
BZOJ 1031 [JSOI2007]字符加密Cipher | 后缀数组模板题 将字符串复制一遍接在原串后面,然后后缀排序即可. #include <cmath> #include &l ...
- POJ 2774 Long Long Message 后缀数组模板题
题意 给定字符串A.B,求其最长公共子串 后缀数组模板题,求出height数组,判断sa[i]与sa[i-1]是否分属字符串A.B,统计答案即可. #include <cstdio> #i ...
随机推荐
- 写个hello world了解Rxjava
目录 什么是Rxjava? 在微服务中的优点 上手使用 引入依赖 浅谈分析Rxjava中的被观察者,观察者 spring boot 项目中使用Rxjava2 什么是Rxjava? 来自百度百科的解释 ...
- 2.5星|《AI进化论》:疑似基于PPT与公关稿整理汇编而成
AI进化论·解码人工智能商业场景与案例 全书是目前AI在一些热门领域的应用的介绍,包括各行业内AI可以实现的功能.现有相关公司的具体业务等.对各公司的介绍仅限于能实现什么业务,具体做的怎么样,有什么优 ...
- Mysql Mariadb 密码问题
mysql密码遗忘和登陆报错问题 mysql登录密码忘记,其实解决办法很简单,只需要在mysql的主配置文件my.cnf里添加一行“跳过授权表”的参数选择即可! 在my.cnf中添加下面一行:[r ...
- IEEE1588 ( PTP ) 协议简介
IEEE1588 协议,又称 PTP( precise time protocol,精确时间协议),可以达到亚微秒级别时间同步精度,于 2002 年发布 version 1,2008 年发布 vers ...
- Discuz3.3精仿小米风格整站模板制作——1、新建模板方案
术语说明: 模板——模板是一堆按照规定命名方式的html文件,用于指定整个论坛不同页面的外观. 标签——标签和模板共同作用以实现论坛换肤功能,其中标签主要控制页面显示什么数据,显示多少条等. 风格—— ...
- 2019 年软件开发人员必学的编程语言 Top 3
AI 前线导读:这篇文章将探讨编程语言世界的现在和未来,这些语言让新一代软件开发者成为这个数字世界的关键参与者,他们让这个世界变得更健壮.连接更加紧密和更有意义.开发者要想在 2019 年脱颖而出,这 ...
- 【RL系列】马尔可夫决策过程中状态价值函数的一般形式
请先阅读上一篇文章:[RL系列]马尔可夫决策过程与动态编程 在上一篇文章里,主要讨论了马尔可夫决策过程模型的来源和基本思想,并以MAB问题为例简单的介绍了动态编程的基本方法.虽然上一篇文章中的马尔可夫 ...
- 关于SQL while 循环嵌套 外部循环数据无法进入内部循环
下面一般是,作为SQL新手第一次写循环嵌套的办法,但是大家会发现一个问题,那就是变量@i总是不能进入第二个循环. declare @i int ,@j int, @k int set @j = 1 - ...
- centos下部署禅道流程
原文摘录:https://www.jianshu.com/p/71e9dab130a5 下面将我在Linux系统下搭建禅道服务的过程分享给大家. 第一步:下载禅道 Linux中可以用以下命令来下载安装 ...
- 利用cocoapods创建基于git的私有库Spec Repo
上一篇文章记录了我利用cocoapods创建基于SVN的私有库的全部过程,今天我再记录一下基于git创建的过程. 整体先说明一下创建一个私有的podspec包括如下那么几个步骤: 创建并设置一个私有的 ...