【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)
【CF995F】Cowmpany Cowmpensation(多项式插值)
题面
题解
我们假装结果是一个关于\(D\)的\(n\)次多项式,
那么,先\(dp\)暴力求解颜色数为\(0..n\)的所有方案数
这是一个\(O(n^2)\)的\(dp\)
然后直接做多项式插值就好了,公式戳这里
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 3030
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int f[MAX][MAX],g[MAX],n,D;
struct Line{int v,next;}e[MAX];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
void dfs(int u)
{
for(int j=1;j<=n;++j)f[u][j]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;dfs(v);
for(int j=1;j<=n;++j)f[u][j]=1ll*f[u][j]*f[v][j]%MOD;
}
for(int i=1;i<=n;++i)f[u][i]=(f[u][i]+f[u][i-1])%MOD;
}
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int Calc(int x)
{
int tmp=1,bs=(n&1)?-1:1,ret=0;
if(x<=n)return f[1][x];
for(int i=1;i<=n;++i)tmp=1ll*tmp*(x-i)%MOD;
for(int i=1;i<=n;++i)tmp=1ll*tmp*fpow(i,MOD-2)%MOD;
for(int i=0;i<=n;++i,bs=-bs)
{
int S=1ll*bs*f[1][i]*tmp%MOD;S=(S+MOD)%MOD;
ret=(ret+S)%MOD;
tmp=1ll*tmp*(x-i)%MOD*fpow(x-i-1,MOD-2)%MOD;
tmp=1ll*tmp*(n-i)%MOD*fpow(i+1,MOD-2)%MOD;
}
return ret;
}
int main()
{
n=read();D=read();
for(int i=2;i<=n;++i)Add(read(),i);
dfs(1);printf("%d\n",Calc(D));
return 0;
}
【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)的更多相关文章
- 【cf995】F. Cowmpany Cowmpensation(拉格朗日插值)
传送门 题意: 给出一颗树,每个结点有取值范围\([1,D]\). 现在有限制条件:对于一个子树,根节点的取值要大于等于子数内各结点的取值. 问有多少种取值方案. 思路: 手画一下发现,对于一颗大小为 ...
- F. Cowmpany Cowmpensation dp+拉格朗日插值
题意:一个数,每个节点取值是1-d,父亲比儿子节点值要大,求方案数 题解:\(dp[u][x]=\prod_{v}\sum_{i=1}^xdp[v][i]\),v是u的子节点,先预处理出前3000项, ...
- 【BZOJ】2655: calc 动态规划+拉格朗日插值
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...
- [CF995F]Cowmpany Cowmpensation[树形dp+拉格朗日插值]
题意 给你一棵树,你要用不超过 \(D\) 的权值给每个节点赋值,保证一个点的权值不小于其子节点,问有多少种合法的方案. \(n\leq 3000, D\leq 10^9\) 分析 如果 \(D\) ...
- [CF995F]Cowmpany Cowmpensation
codeforces description 一棵\(n\)个节点的树,给每个节点标一个\([1,m]\)之间的编号,要求儿子的权值不大于父亲权值.求方案数.\(n\le3000,n\le10^9\) ...
- 【CF995F】 Cowmpany Cowmpensation
CF995F Cowmpany Cowmpensation Solution 这道题目可以看出我的代码能力是有多渣(代码能力严重退化) 我们先考虑dp,很容易写出方程: 设\(f_{i,j}\)表示以 ...
- 拉格朗日插值优化DP
拉格朗日插值优化DP 模拟赛出现神秘插值,太难啦!! 回忆拉格朗日插值是用来做什么的 对于一个多项式\(F(x)\),如果已知它的次数为\(m - 1\),且已知\(m\)个点值,那么可以得到 \[F ...
- 【CF995F】Cowmpany Cowmpensation
[CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq ...
- 【BZOJ4559】成绩比较(动态规划,拉格朗日插值)
[BZOJ4559]成绩比较(动态规划,拉格朗日插值) 题面 BZOJ 洛谷 题解 显然可以每门课顺次考虑, 设\(f[i][j]\)表示前\(i\)门课程\(zsy\)恰好碾压了\(j\)个\(yy ...
随机推荐
- easyx图形库做贪吃蛇游戏
编程总是对着一个黑窗口,可以说是非常乏味了,于是喵喵就翻出来了以前用easyx图形库做图形界面的贪吃蛇游戏. 不过大家只是当做提高编程的乐趣来学习吧,想进一步做的话可以学习QT,还有其他的框架. 这是 ...
- STUN, TURN, ICE介绍
STUN STUN协议为终端提供一种方式能够获知自己经过NAT映射后的地址,从而替代位于应用层中的私网地址,达到NAT穿透的目的.STUN协议是典型的Client-Server协议,各种具体应用通过嵌 ...
- Mysql读写分离——主从数据库+Atlas
mysql集群 最近在参加项目开发微信小程序后台,由于用户数量巨大,且后台程序并不是很完美,所以对用户的体验很是不友好(简单说就是很卡).赶巧最近正在翻阅<大型网站系统与Java中间件实践> ...
- kubernetes高可用设计-CA,etcd
环境准备: master01:192.168.150.128 master02:192.168.150.130 master03:192.168.150.131 node01:192.168.150. ...
- Go单元测试注意事项及测试单个方法和整个文件的命令
Go程序开发过程中免不了要对所写的单个业务方法进行单元测试,Go提供了 "testing" 包可以实现单元测试用例的编写,不过想要正确编写单元测试需要注意以下三点: Go文件名必须 ...
- Metasploit漏洞利用,三个入侵主机实战案例
受害者主机 windows2003 ie模拟工具ietest ie5.5/6/7/ 漏洞:MS10_002,MS10_018,MS12-020 ---------------------------- ...
- 为什么你学过Java却忘光了——记第一次助教同学见面会
大约两周之前,主讲老师刘志勇老师和我约定,让我上周四到课堂上和同学们认识.交流一下.一开始我不太明了去和大家见面要说些什么,也不太理解这么做的必要性是什么.但随着日子临近,我请教了周筠老师,周筠老师和 ...
- 王者荣耀交流协会final发布第五次scrum例会
1.例会照片 成员高远博,冉华,王磊,王玉玲,任思佳,袁玥,王磊,王超. master:王磊 2.时间跨度 2017年12月5日 18:00 — 18:21,总计21分钟 3.地点 一食堂二楼沙发座椅 ...
- 渡过OO的死劫,了解规格的意义——OO第三次博客总结
当熬过了一次次黑暗,迎接我们的却是被扣的惨不忍睹的JSF ┭┮﹏┭┮ 一.总结调研 规格的历史 传统科学的特点是发现世界,而软件的特点是构造世界.软件的最底层就是0,1,两个离散的值.程序设计语言的三 ...
- 作业1MathExam
自己取一个大气又可爱的标题 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 720 1000 ...