容斥大法妙~其实网上很多的题解虽然给出了容斥系数,但是并没有说明为什么是这个样子的。在这里解释一下好了。

  考虑用容斥,实际上就是让 \(ans = \sum_{T\subseteq S}^{\ }f_{T}*h_{T}\)。其中,\(f\) 为容斥的系数,而 \(h\) 为一个集合的‘贡献’。这个贡献的值往往对于集合当中的各个元素而言是独立的。由于这题中是要我们求出所有的被操作了奇数次的灯的数量,所以有:

\(g_{x}=\sum_{i = 1}^{x}\binom{x}{i}*f_{i}=[x\&1]\)

\(g_{x}\) 为是原数列中 \(x\) 个数的倍数的数所对答案产生的贡献

令\(f[0] = 0\),

则\(g_{x}=\sum_{i = 0}^{x}\binom{x}{i}*f_{i}=[x\&1]\)

那么根据二项式反演,有

\(f_x = \sum_{i = 0}^{x} g_i * \binom{x}{i}*(-1)^{x - i}\)

\(f_x = \sum_{i = 0}^{x}\binom{x}{i}*(-1)^{x - i}[x\&1]\)

根据\(f_x = \sum_{i = 0}^{x}\binom{x}{i}*(-1)^{x - i}[x\&1]\)

对\(x\) 的奇偶性分类讨论一下,再加上:

\(\binom{n}{1}+\binom{n}{3}+\binom{n}{5}...=2^{n - 1}\)

(这个式子就不用解释了吧……)

然后就得到了\(f_x\) 的表达式~

  下面这份代码为 \(n^{2}\) 求出容斥系数,但实际上可以按照上文所说做到\(O(1)\)……

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000
#define int long long
int n, m, ans, cnt, S[maxn];
int f[maxn], a[maxn], C[maxn][maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void Pre()
{
for(int i = ; i < ; i ++) C[i][] = ;
for(int i = ; i < ; i ++)
for(int j = ; j < ; j ++)
C[i][j] = C[i - ][j - ] + C[i - ][j];
} int Get(int x)
{
int t = x & ;
for(int i = ; i < x; i ++)
t -= C[x][i] * f[i];
return t;
} int gcd(int a, int b)
{
int c = ;
while(b) c = a % b, a = b, b = c;
return a;
} void dfs(int now)
{
if(now == m + )
{
int lcm = ;
for(int i = ; i <= cnt; i ++)
lcm = lcm * S[i] / gcd(lcm, S[i]);
ans += f[cnt] * (n / lcm);
return;
}
S[++ cnt] = a[now]; dfs(now + );
cnt --; dfs(now + );
} signed main()
{
int T = read(); f[] = ; f[] = ; Pre();
for(int i = ; i <= ; i ++) f[i] = Get(i);
for(int i = ; i <= T; i ++)
{
n = read(), m = read(); ans = ;
for(int j = ; j <= m; j ++) a[j] = read();
dfs();
printf("%lld\n", ans);
}
return ;
}

【题解】玲珑杯河南专场17B的更多相关文章

  1. “玲珑杯”线上赛 Round #17 河南专场

    闲来无事呆在寝室打打题,没有想到还有中奖这种操作,超开心的 玲珑杯”线上赛 Round #17 河南专场 Start Time:2017-06-24 12:00:00 End Time:2017-06 ...

  2. “玲珑杯”线上赛 Round #17 河南专场 B:震惊,99%+的中国人都会算错的问题(容斥计算)

    传送门 题意 略 分析 是一道稍微变形的容斥题目,容斥一般的公式 \[ans=\sum_iAi-\sum_{i<j}{Ai∩Aj}+\sum_{i<j<k}{Ai∩Aj∩Ak}+.. ...

  3. “玲珑杯”线上赛 Round #17 河南专场 A: Sin your life(和化积公式)

    传送门 题意 略 分析 首先将sin(x)+sin(y)+sin(z)h转化成\(2*sin(\frac{x+y}2)*cos(\frac{x-y}2)+sin(z)\),而cos(z)=cos(-z ...

  4. 玲珑oj 1128 RMQ模板

    1128 - 咸鱼拷问 Time Limit:3s Memory Limit:128MByte Submissions:380Solved:118 DESCRIPTION 给你两个序列A,B.每个序列 ...

  5. 玲珑oj 1129 ST

    1129 - 喵哈哈村的战斗魔法师丶坏坏い月 Time Limit:3s Memory Limit:256MByte Submissions:490Solved:107 DESCRIPTION 坏坏い ...

  6. GOOD BYE OI

    大米饼正式退役了,OI给我带来很多东西 我会的数学知识基本都在下面了 博客园的评论区问题如果我看到了应该是会尽力回答的... 这也是我作为一个OIer最后一次讲课的讲稿 20190731 多项式乘法 ...

  7. “玲珑杯”ACM比赛 Round #12题解&源码

    我能说我比较傻么!就只能做一道签到题,没办法,我就先写下A题的题解&源码吧,日后补上剩余题的题解&源码吧!                                     A ...

  8. “玲珑杯”ACM比赛 Round #19题解&源码【A,规律,B,二分,C,牛顿迭代法,D,平衡树,E,概率dp】

    A -- simple math problem Time Limit:2s Memory Limit:128MByte Submissions:1599Solved:270 SAMPLE INPUT ...

  9. “玲珑杯”ACM比赛 Round #1 题解

    A:DESCRIPTION Eric has an array of integers a1,a2,...,ana1,a2,...,an. Every time, he can choose a co ...

随机推荐

  1. 转载Linux下开启MySQL日志

    转载https://blog.csdn.net/weixin_38187469/article/details/79273962 开启mysql日志   1.查看日志是否启用 mysql> sh ...

  2. 阿里云Linux的mysql安装,使用yum安装

    1.下载 我下载的mysql5.7 rpm格式的,在Linux的根目录下下载(防止出现安装的问题) wget https://dev.mysql.com/get/mysql57-community-r ...

  3. oracle数据库之rownum和rowid用法

    Rownum 和 Rowid是Oracle数据库所特有的,通过他们可以查询到指定行数范围内的数据记录.   以下通过例子讲解: -- 为了方便,首先,查找dept表中的所有. select deptn ...

  4. 如何用Python为你的邮箱加油?还有这种操作!

    我来介绍一下我是如何使用 Python 来节省成本的. 我最近在开一辆烧 93 号汽油的车子.根据汽车制造商的说法,它只需要加 91 号汽油就可以了.然而,在美国只能买到 87 号.89 号.93 号 ...

  5. 关于MySql数据库主键及索引的区别

    一.什么是索引?索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存.如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找到符合要求的记录.表里 ...

  6. python3 拼接字符串的7种方法

    1.直接通过(+)操作符拼接 1 2 >>> 'Hello' + ' ' + 'World' + '!' 'Hello World!' 使用这种方式进行字符串连接的操作效率低下,因为 ...

  7. 无法连接 Plugins Market 失效的日子

    一.问题背景 不知道是什么原因,我的 Intellij 连接不上 Plugins Market,这时候我需要使用 @Data 注解来自动生成 Getter.Setter 方法.在添加了相应的依赖之后, ...

  8. Maven打包jar类库

    项目目录>mvn clean compile 编译命令,会在你的项目路径下生成一个target目录,在该目录中包含一个classes文件夹,里面全是生成的class文件及字节码文件. 项目目录& ...

  9. [linux] 查看网卡UUID

    virtualbox复制了虚拟机,重新初始化网卡后,需要对/etc/sysconfig/network-scripts/ifcfg-eth0更新UUID值,虽然不改暂时也没发现有问题. 网上查找需要n ...

  10. React环境配置(第一个React项目)

    使用Webpack构建React项目 1. 使用NPM配置React环境 NPM及React安装自行百度 首先创建一个文件夹,the_first_React 进入到创建好的目录,npm init,然后 ...