【题解】玲珑杯河南专场17B
容斥大法妙~其实网上很多的题解虽然给出了容斥系数,但是并没有说明为什么是这个样子的。在这里解释一下好了。
考虑用容斥,实际上就是让 \(ans = \sum_{T\subseteq S}^{\ }f_{T}*h_{T}\)。其中,\(f\) 为容斥的系数,而 \(h\) 为一个集合的‘贡献’。这个贡献的值往往对于集合当中的各个元素而言是独立的。由于这题中是要我们求出所有的被操作了奇数次的灯的数量,所以有:
\(g_{x}=\sum_{i = 1}^{x}\binom{x}{i}*f_{i}=[x\&1]\)
\(g_{x}\) 为是原数列中 \(x\) 个数的倍数的数所对答案产生的贡献
令\(f[0] = 0\),
则\(g_{x}=\sum_{i = 0}^{x}\binom{x}{i}*f_{i}=[x\&1]\)
那么根据二项式反演,有
\(f_x = \sum_{i = 0}^{x} g_i * \binom{x}{i}*(-1)^{x - i}\)
\(f_x = \sum_{i = 0}^{x}\binom{x}{i}*(-1)^{x - i}[x\&1]\)
根据\(f_x = \sum_{i = 0}^{x}\binom{x}{i}*(-1)^{x - i}[x\&1]\)
对\(x\) 的奇偶性分类讨论一下,再加上:
\(\binom{n}{1}+\binom{n}{3}+\binom{n}{5}...=2^{n - 1}\)
(这个式子就不用解释了吧……)
然后就得到了\(f_x\) 的表达式~
下面这份代码为 \(n^{2}\) 求出容斥系数,但实际上可以按照上文所说做到\(O(1)\)……
#include <bits/stdc++.h>
using namespace std;
#define maxn 1000
#define int long long
int n, m, ans, cnt, S[maxn];
int f[maxn], a[maxn], C[maxn][maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void Pre()
{
for(int i = ; i < ; i ++) C[i][] = ;
for(int i = ; i < ; i ++)
for(int j = ; j < ; j ++)
C[i][j] = C[i - ][j - ] + C[i - ][j];
} int Get(int x)
{
int t = x & ;
for(int i = ; i < x; i ++)
t -= C[x][i] * f[i];
return t;
} int gcd(int a, int b)
{
int c = ;
while(b) c = a % b, a = b, b = c;
return a;
} void dfs(int now)
{
if(now == m + )
{
int lcm = ;
for(int i = ; i <= cnt; i ++)
lcm = lcm * S[i] / gcd(lcm, S[i]);
ans += f[cnt] * (n / lcm);
return;
}
S[++ cnt] = a[now]; dfs(now + );
cnt --; dfs(now + );
} signed main()
{
int T = read(); f[] = ; f[] = ; Pre();
for(int i = ; i <= ; i ++) f[i] = Get(i);
for(int i = ; i <= T; i ++)
{
n = read(), m = read(); ans = ;
for(int j = ; j <= m; j ++) a[j] = read();
dfs();
printf("%lld\n", ans);
}
return ;
}
【题解】玲珑杯河南专场17B的更多相关文章
- “玲珑杯”线上赛 Round #17 河南专场
闲来无事呆在寝室打打题,没有想到还有中奖这种操作,超开心的 玲珑杯”线上赛 Round #17 河南专场 Start Time:2017-06-24 12:00:00 End Time:2017-06 ...
- “玲珑杯”线上赛 Round #17 河南专场 B:震惊,99%+的中国人都会算错的问题(容斥计算)
传送门 题意 略 分析 是一道稍微变形的容斥题目,容斥一般的公式 \[ans=\sum_iAi-\sum_{i<j}{Ai∩Aj}+\sum_{i<j<k}{Ai∩Aj∩Ak}+.. ...
- “玲珑杯”线上赛 Round #17 河南专场 A: Sin your life(和化积公式)
传送门 题意 略 分析 首先将sin(x)+sin(y)+sin(z)h转化成\(2*sin(\frac{x+y}2)*cos(\frac{x-y}2)+sin(z)\),而cos(z)=cos(-z ...
- 玲珑oj 1128 RMQ模板
1128 - 咸鱼拷问 Time Limit:3s Memory Limit:128MByte Submissions:380Solved:118 DESCRIPTION 给你两个序列A,B.每个序列 ...
- 玲珑oj 1129 ST
1129 - 喵哈哈村的战斗魔法师丶坏坏い月 Time Limit:3s Memory Limit:256MByte Submissions:490Solved:107 DESCRIPTION 坏坏い ...
- GOOD BYE OI
大米饼正式退役了,OI给我带来很多东西 我会的数学知识基本都在下面了 博客园的评论区问题如果我看到了应该是会尽力回答的... 这也是我作为一个OIer最后一次讲课的讲稿 20190731 多项式乘法 ...
- “玲珑杯”ACM比赛 Round #12题解&源码
我能说我比较傻么!就只能做一道签到题,没办法,我就先写下A题的题解&源码吧,日后补上剩余题的题解&源码吧! A ...
- “玲珑杯”ACM比赛 Round #19题解&源码【A,规律,B,二分,C,牛顿迭代法,D,平衡树,E,概率dp】
A -- simple math problem Time Limit:2s Memory Limit:128MByte Submissions:1599Solved:270 SAMPLE INPUT ...
- “玲珑杯”ACM比赛 Round #1 题解
A:DESCRIPTION Eric has an array of integers a1,a2,...,ana1,a2,...,an. Every time, he can choose a co ...
随机推荐
- 域名配置https
阿里可以一年的免费申请https证书 (1)域名->管理->免费开启SSL证书 (2)申请完.等待审核后就可以下载证书压缩包,包括key和pem两个文件 (3)在服务器的nginx目录下创 ...
- FATAL ERROR: Tried to use mysqladmin in group......
解决办法,#export PATH=$PATH:/usr/bin
- 求二维数组最大子数组的和。郭林林&胡潇丹
求二维数组子数组的最大值,开始思路不太清晰.先从最简单的开始. 以2*2的简单数组为例找规律, 假设最大数为a[0][0],则summax=a[0][0],比较a[0][0]+a[0][1].a[0] ...
- 【RL系列】Multi-Armed Bandit笔记补充(二)
本篇的主题是对Upper Conference Bound(UCB)策略进行一个理论上的解释补充,主要探讨UCB方法的由来与相关公式的推导. UCB是一种动作选择策略,主要用来解决epsilon-gr ...
- Android NDK 工具链的使用方法(Standalone Toolchain)
转载:http://blog.csdn.net/smfwuxiao/article/details/6587709 首先需要确定目标机器的指令集. 如果是 x86 的机器,用 x86-4.4.3 版本 ...
- 遇到执行SQL 的参数最大个数
报错: 传入的表格格式数据流(TDS)远程过程调用(RPC)协议流不正确.此 RPC 请求中提供了过多的参数.最多应为 2100. 现象是: SQL 执行的参数过多,超过了 最大值 :2100 个. ...
- dmesg命令详解
基础命令学习目录 http://linux.cn/article-3587-1.html dmesg 命令的使用范例 下面我们展示一些最负盛名的‘dmesg’命令工具以及其实际使用举例.‘dmesg’ ...
- 完整Highchart JS示例
线性: $.ajax({ type:'post', url:appPages.urlListTjrll, cache:false, data:{year:year,month:month},// // ...
- Trick and Magic(OO博客第二弹)
代码是设计,不是简单的陈述.而设计不仅要求功能的正确性,更注重设计风格和模式. 真正可以投入应用的程序设计,不是那种无脑的“黑箱”,超巨大的数组,多重循环暴力搜索,成吨全局变量……事实上,在实际应用中 ...
- poi读取、通过poi导出数据库的记录到excl表
package com.nt.test; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFo ...