「HEOI 2016/TJOI 2016」求和
题目链接
\(Solution\)
先化简式子:
\]
\]
根据第二类斯特林数的公式:
\]
\]
我们令\(F(i)=\frac{(-1)^k}{i!},G(i)=\frac{\sum_{j=0}^ni^j}{i!}\)
根据等比数列求和公式可得:
\(\sum_{j=0}^ni^j=\frac{i^{n+1}-1}{i-1}\)
所以\(G(i)=\frac{i^{n+1}-1}{(i-1)*i!}\)
\(G(0)=1,G(1)=n+1\)
那么
\]
因为当\(j>k\)时\(G(j-k)=0\)
所以原式等价于:
\]
这个东西直接\(NTT\)搞一搞就好了
\(Code\)
#include<bits/stdc++.h>
#define int long long
#define rg register
#define file(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
const int mod=998244353;
const int N=500010;
int read(){
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return f*x;
}
int f[N],g[N],r[N],limit=1,w[N],inv[N],a[N],b[N],jc[N];
int ksm(int a,int b){
int ans=1;
while(b){
if(b&1) ans=ans*a%mod;
a=a*a%mod,b>>=1;
}
return ans;
}
void ntt(int *a,int opt){
for(int i=0;i<=limit;i++)
if(i<r[i])
swap(a[i],a[r[i]]);
for(int i=1;i<limit;i<<=1){
int w=ksm(3,(mod-1)/(i*2));
if(opt==-1) w=ksm(w,mod-2);
for(int j=0;j<limit;j+=i<<1){
int l=1;
for(int k=j;k<j+i;k++){
int p=l*a[k+i]%mod;
a[k+i]=(a[k]-p+mod)%mod;
a[k]=(a[k]+p)%mod;
l=l*w%mod;
}
}
}
}
main(){
int n=read(),l=0,ans=0;
while(limit<=(n<<1))
limit<<=1,l++;
jc[0]=1;
for(int i=1;i<=limit;i++)
jc[i]=jc[i-1]*i%mod;
inv[limit]=ksm(jc[limit],mod-2);
for(int i=limit-1;i>=0;i--)
inv[i]=inv[i+1]*(i+1)%mod;
g[0]=1,g[1]=n+1,f[1]=mod-1,f[0]=1;
for(int i=2;i<=n;i++)
g[i]=(ksm(i,n+1)-1)%mod*inv[i]%mod*ksm(i-1,mod-2)%mod,f[i]=i&1?mod-inv[i]:inv[i];
for(int i=0;i<limit;i++)
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
ntt(f,1),ntt(g,1);
for(int i=0;i<limit;i++)
f[i]=f[i]*g[i]%mod;
ntt(f,-1);
int inv=ksm(limit,mod-2);
for(int i=0;i<=n;i++)
ans=(ans+ksm(2,i)*jc[i]%mod*f[i]%mod*inv%mod)%mod;
printf("%lld",ans);
}
「HEOI 2016/TJOI 2016」求和的更多相关文章
- loj2058 「TJOI / HEOI2016」求和 NTT
loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...
- 「TJOI / HEOI2016」求和 的一个优秀线性做法
我们把\(S(i, j)j!\)看成是把\(i\)个球每次选择一些球(不能为空)扔掉,选\(j\)次后把所有球都扔掉的情况数(顺序有关).因此\(S(i, j)j! = i·2^j·j!$其中$ S(n,m)$是第二类斯特林数 $ Sol ...
- loj2058 「TJOI / HEOI2016」求和
推柿子 第二类斯特林数的容斥表达 fft卡精度就用ntt吧qwq. #include <iostream> #include <cstdio> using namespace ...
- Loj #2731 「JOISC 2016 Day 1」棋盘游戏
Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少 ...
- 「JOISC 2016 Day 1」棋盘游戏
「JOISC 2016 Day 1」棋盘游戏 先判无解:第1,3行有连续的空格或四个角有空格. 然后可以发现有解的情况第1,3行可以在任意时间摆放. 对于某一列,若第2行放有棋子,那么显然可以把棋盘分 ...
- loj #2055. 「TJOI / HEOI2016」排序
#2055. 「TJOI / HEOI2016」排序 题目描述 在 2016 年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个 ...
- loj#2054. 「TJOI / HEOI2016」树
题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...
- 「TJOI / HEOI2016」字符串
「TJOI / HEOI2016」字符串 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为 \(n\) 的字符串 \(s\),和 ...
随机推荐
- 数据结构(四) 图(Graph)
在图形结构中,结点之间的关系可以是任意的. 一.图 图由定点(vertex)和边(edge)两个有限集合组成: Graph=(V,R) V是定点集,R={E},E是边集. 有向图(directed n ...
- Tomcat error: failed to start connector [connector[HTTP/1.1-8080]]
出现这个问题多半是因为8080端口被占用了.换一个端口试试
- web-CSS居中大全
居中是我们使用css来布局时常遇到的情况.使用css来进行居中时,有时一个属性就能搞定,有时则需要一定的技巧才能兼容到所有浏览器,本文就居中的一些常用方法做个简单的介绍. 注:本文所讲方法除了特别说明 ...
- monkey基础使用教程,如何安装和monkey分析日志
1.概念 什么是monkey,monkey的作用是什么? Monkey是Android自身提供的,可以通过adb shell模拟用户行为,发送一些伪随机用户事件到目标设备上. Monkey和它的直接意 ...
- springboot启动端口占用问题,报错org.apache.catalina.LifecycleException: Protocol handler start failed
解决办法,找到被占用的端口
- ffmpeg3.3.2命令行参数笔记
组成: 1.libavformat:用于各种音视频封装格式的生成和解析,包括获取解码所需信息以生成解码上下文结构和读取音视频帧等功能,包含demuxers和muxer库: 2.libavcodec:用 ...
- Vi编辑器中查找替换
1 第一个是替换当前行的yesterday为all 第二个是替换全局的 yesterday 为all :s/yesterday/all :s/yesterday/all/g
- zabbix-server、proxy、agent的分布式部署步骤
1.准备工作 关闭防火墙和SELinux防火墙,因为他们会限制一些访问权限,如果服务器不能关闭就需要手动设置规则,这里测试用就直接关闭了 service firewalld stop; setenfo ...
- 自学Python5.7-面向对象三大基本特征_封装
自学Python之路-Python基础+模块+面向对象自学Python之路-Python网络编程自学Python之路-Python并发编程+数据库+前端自学Python之路-django 自学Pyth ...
- 2017 ICPC 乌鲁木齐
H:题目看错 背锅 #include <bits/stdc++.h> #include <vector> #define PI acos(-1.0) #define mem(a ...