「HEOI 2016/TJOI 2016」求和
题目链接
\(Solution\)
先化简式子:
\]
\]
根据第二类斯特林数的公式:
\]
\]
我们令\(F(i)=\frac{(-1)^k}{i!},G(i)=\frac{\sum_{j=0}^ni^j}{i!}\)
根据等比数列求和公式可得:
\(\sum_{j=0}^ni^j=\frac{i^{n+1}-1}{i-1}\)
所以\(G(i)=\frac{i^{n+1}-1}{(i-1)*i!}\)
\(G(0)=1,G(1)=n+1\)
那么
\]
因为当\(j>k\)时\(G(j-k)=0\)
所以原式等价于:
\]
这个东西直接\(NTT\)搞一搞就好了
\(Code\)
#include<bits/stdc++.h>
#define int long long
#define rg register
#define file(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
const int mod=998244353;
const int N=500010;
int read(){
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return f*x;
}
int f[N],g[N],r[N],limit=1,w[N],inv[N],a[N],b[N],jc[N];
int ksm(int a,int b){
int ans=1;
while(b){
if(b&1) ans=ans*a%mod;
a=a*a%mod,b>>=1;
}
return ans;
}
void ntt(int *a,int opt){
for(int i=0;i<=limit;i++)
if(i<r[i])
swap(a[i],a[r[i]]);
for(int i=1;i<limit;i<<=1){
int w=ksm(3,(mod-1)/(i*2));
if(opt==-1) w=ksm(w,mod-2);
for(int j=0;j<limit;j+=i<<1){
int l=1;
for(int k=j;k<j+i;k++){
int p=l*a[k+i]%mod;
a[k+i]=(a[k]-p+mod)%mod;
a[k]=(a[k]+p)%mod;
l=l*w%mod;
}
}
}
}
main(){
int n=read(),l=0,ans=0;
while(limit<=(n<<1))
limit<<=1,l++;
jc[0]=1;
for(int i=1;i<=limit;i++)
jc[i]=jc[i-1]*i%mod;
inv[limit]=ksm(jc[limit],mod-2);
for(int i=limit-1;i>=0;i--)
inv[i]=inv[i+1]*(i+1)%mod;
g[0]=1,g[1]=n+1,f[1]=mod-1,f[0]=1;
for(int i=2;i<=n;i++)
g[i]=(ksm(i,n+1)-1)%mod*inv[i]%mod*ksm(i-1,mod-2)%mod,f[i]=i&1?mod-inv[i]:inv[i];
for(int i=0;i<limit;i++)
r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
ntt(f,1),ntt(g,1);
for(int i=0;i<limit;i++)
f[i]=f[i]*g[i]%mod;
ntt(f,-1);
int inv=ksm(limit,mod-2);
for(int i=0;i<=n;i++)
ans=(ans+ksm(2,i)*jc[i]%mod*f[i]%mod*inv%mod)%mod;
printf("%lld",ans);
}
「HEOI 2016/TJOI 2016」求和的更多相关文章
- loj2058 「TJOI / HEOI2016」求和 NTT
loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...
- 「TJOI / HEOI2016」求和 的一个优秀线性做法
我们把\(S(i, j)j!\)看成是把\(i\)个球每次选择一些球(不能为空)扔掉,选\(j\)次后把所有球都扔掉的情况数(顺序有关).因此\(S(i, j)j! = i·2^j·j!$其中$ S(n,m)$是第二类斯特林数 $ Sol ...
- loj2058 「TJOI / HEOI2016」求和
推柿子 第二类斯特林数的容斥表达 fft卡精度就用ntt吧qwq. #include <iostream> #include <cstdio> using namespace ...
- Loj #2731 「JOISC 2016 Day 1」棋盘游戏
Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少 ...
- 「JOISC 2016 Day 1」棋盘游戏
「JOISC 2016 Day 1」棋盘游戏 先判无解:第1,3行有连续的空格或四个角有空格. 然后可以发现有解的情况第1,3行可以在任意时间摆放. 对于某一列,若第2行放有棋子,那么显然可以把棋盘分 ...
- loj #2055. 「TJOI / HEOI2016」排序
#2055. 「TJOI / HEOI2016」排序 题目描述 在 2016 年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个 ...
- loj#2054. 「TJOI / HEOI2016」树
题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...
- 「TJOI / HEOI2016」字符串
「TJOI / HEOI2016」字符串 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为 \(n\) 的字符串 \(s\),和 ...
随机推荐
- java虚拟机精讲
2.程序计数器 是指当前线程所执行字节码的行号指示器 比如if 循环 抛异常 等都需要程序计数器 如果线程执行java方法 程序计数器记录的是虚拟机字节码指令的地址 如果线程执行native方法时程序 ...
- Scala学习二——控制结构和函数
一.if表达式有值 val s=if(x>0) 1 else -1,相当于Java中x>0?1:-1(不过不拿呢个在?:中插入语句),而且Scala中可以用混合类型(如if (x>0 ...
- ajax调用,action返回的中文为乱码的解决方案
原文:ajax调用,action返回的中文为乱码的解决方案 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.c ...
- sql server truncate语句
truncate语句 --truncate table '表名' --这样就利用SQL语句清空了该数据表,而不保留日志
- 预约系统(四) 管理页面框架搭建easyUI
Manage控制器用于管理页面 Index视图为管理页面首页,采用easyUi的后台管理框架 Html头部调用,jquery库,easyui库,easyui.css,icon.css,语言包 < ...
- 01 Linux常用基本命令(一)
1.远程连接服务器 Xshell为例: ssh 用户名@IP地址 (ssh root@192.168.119.139) 查看服务器的IP地址: ifconfig (ip addr) 2.命令 1.ls ...
- git 基础命令 学习总结
首先介绍一个git 里工作流的概念: 你的本地仓库由 git 维护的三棵“树”组成.第一个是你的 工作目录,它持有实际文件:第二个是 缓存区(Index),它像个缓存区域,临时保存你的改动:最后是 H ...
- vscode常用插件列表
vscode插件 备注 Markdown PDF 把markdown文件转换成别的文件 Markdown TOC markdown文件目录生成 PHP Debug PHP调试 PHP Intenlli ...
- 多线程编程-- part5.1 互斥锁之公平锁-释放锁
释放公平锁 1.unlock() unlock()在ReentrantLock.java中实现的,源码如下: public void unlock() { sync.release(1); } 说明: ...
- 设置Linux之CentOS7的网络的两种方式动态IP+静态IP
1 动态IP 参考之前的文章 点击进入 2 静态IP vi /etc/sysconfig/network-scripts/ifcfg-ens33 详情配置如下,上面半部分是我之前的动态IP的设置 静态 ...