【HDU5306】【DTOJ2481】Gorgeous Sequence【线段树】

题目大意:给你一个序列a,你有三个操作,0: x y t将a[x,y]和t取min;1:x y求a[x,y]的最大值;2:x y求a[x,y]的sum
题解:首先很明显就是线段树裸题,那么考虑如何维护
区间最大值和区间sum很好维护,0操作不好做,那么考虑怎么快速解决0操作
很容易想到维护区间最大值和区间是否全部相同,这是一个做法,但是时间复杂度上却不正确,但也给了我们一个思路,可以通过维护最大值之类的数来加快操作
一个不行就两个,于是考虑维护次大值,那么每次0操作就有三种情况,一:比区间最大值还大,那么直接返回;二:大于区间次大值小于区间最大值,那么可以直接修改区间;三:小于区间次大值,那么继续递归下去;
这么做是可行的,在更新区间时因为要维护sum值,于是多维护一个区间max有多少个即可
证明略,时间复杂度o(nlog^2n)——来源:吉老师
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#define ll long long
using namespace std;
int T,n,m;
ll a[];
class Segtree
{
public:
ll sum[*],mx[*],smx[*],cnt[*],fl[*]; void pushup(int pos)
{
sum[pos]=sum[pos<<]+sum[pos<<|];
if(mx[pos<<]>mx[pos<<|])
{
mx[pos]=mx[pos<<];
cnt[pos]=cnt[pos<<];
if(mx[pos<<|]>smx[pos<<])smx[pos]=mx[pos<<|];
else smx[pos]=smx[pos<<];
}
if(mx[pos<<]<mx[pos<<|])
{
mx[pos]=mx[pos<<|];
cnt[pos]=cnt[pos<<|];
if(mx[pos<<]>smx[pos<<|])smx[pos]=mx[pos<<];
else smx[pos]=smx[pos<<|];
}
if(mx[pos<<]==mx[pos<<|])
{
mx[pos]=mx[pos<<];
cnt[pos]=cnt[pos<<]+cnt[pos<<|];
if(smx[pos<<]>smx[pos<<|])smx[pos]=smx[pos<<];
else smx[pos]=smx[pos<<|];
}
}
void pushdown(int pos)
{
if(fl[pos]>=)
{
if(mx[pos<<]>fl[pos])
{
sum[pos<<]-=(mx[pos<<]-fl[pos])*cnt[pos<<];
fl[pos<<]=mx[pos<<]=fl[pos];
}
if(mx[pos<<|]>fl[pos])
{
sum[pos<<|]-=(mx[pos<<|]-fl[pos])*cnt[pos<<|];
fl[pos<<|]=mx[pos<<|]=fl[pos];
}
fl[pos]=-;
}
}
void build(int l,int r,int pos)
{
if(l==r)
{
sum[pos]=mx[pos]=a[l];
cnt[pos]=;
fl[pos]=smx[pos]=-;
return;
}
int mid=l+r>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
pushup(pos);
fl[pos]=-;
}
void change(int l,int r,int al,int ar,ll v,int pos)
{
int mid=l+r>>;
if(l==al && r==ar)
{
if(v>=mx[pos])return;
if(smx[pos]<v && v<mx[pos])
{
sum[pos]-=(mx[pos]-v)*cnt[pos];
fl[pos]=mx[pos]=v;
return;
}
change(l,mid,al,mid,v,pos<<);
change(mid+,r,mid+,ar,v,pos<<|);
pushup(pos);
return;
}
pushdown(pos);
if(ar<=mid)change(l,mid,al,ar,v,pos<<);
if(al>mid)change(mid+,r,al,ar,v,pos<<|);
if(al<=mid && ar>mid){change(l,mid,al,mid,v,pos<<);change(mid+,r,mid+,ar,v,pos<<|);}
pushup(pos);
}
ll askmax(int l,int r,int al,int ar,int pos)
{
if(l==al && r==ar)return mx[pos];
int mid=l+r>>;
pushdown(pos);
if(ar<=mid)return askmax(l,mid,al,ar,pos<<);
if(al>mid)return askmax(mid+,r,al,ar,pos<<|);
if(al<=mid && ar>mid)
{
ll t1=askmax(l,mid,al,mid,pos<<),t2=askmax(mid+,r,mid+,ar,pos<<|);
return t1>t2?t1:t2;
}
}
ll asksum(int l,int r,int al,int ar,int pos)
{
if(l==al && r==ar)return sum[pos];
int mid=l+r>>;
pushdown(pos);
if(ar<=mid)return asksum(l,mid,al,ar,pos<<);
if(al>mid)return asksum(mid+,r,al,ar,pos<<|);
if(al<=mid && ar>mid)return asksum(l,mid,al,mid,pos<<)+asksum(mid+,r,mid+,ar,pos<<|);
}
}segtree;
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%lld",&a[i]);
segtree.build(,n,);
int mod,x,y;ll t;
while(m--)
{
scanf("%d",&mod);
if(mod==)
{
scanf("%d%d%lld",&x,&y,&t);
segtree.change(,n,x,y,t,);
}
if(mod==)
{
scanf("%d%d",&x,&y);
printf("%lld\n",segtree.askmax(,n,x,y,));
}
if(mod==)
{
scanf("%d%d",&x,&y);
printf("%lld\n",segtree.asksum(,n,x,y,));
}
}
}
return ;
}
心得:有时候多维护一个次大值能解决很多问题,更多时候在不知道如何证明时间复杂度的情况下往往维护次大值是正确的
【HDU5306】【DTOJ2481】Gorgeous Sequence【线段树】的更多相关文章
- 【hdu5306】Gorgeous Sequence 线段树区间最值操作
题目描述 给你一个序列,支持三种操作: $0\ x\ y\ t$ :将 $[x,y]$ 内大于 $t$ 的数变为 $t$ :$1\ x\ y$ :求 $[x,y]$ 内所有数的最大值:$2\ x\ y ...
- HDU 5306 Gorgeous Sequence[线段树区间最值操作]
Gorgeous Sequence Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDOJ 5306 Gorgeous Sequence 线段树
http://www.shuizilong.com/house/archives/hdu-5306-gorgeous-sequence/ Gorgeous Sequence Time Limit: 6 ...
- HDU - 5306 Gorgeous Sequence 线段树 + 均摊分析
Code: #include<algorithm> #include<cstdio> #include<cstring> #define ll long long ...
- 2016暑假多校联合---Rikka with Sequence (线段树)
2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...
- Wow! Such Sequence!(线段树4893)
Wow! Such Sequence! Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸
D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...
- hdu4893Wow! Such Sequence! (线段树)
Problem Description Recently, Doge got a funny birthday present from his new friend, Protein Tiger f ...
- HDU 6047 Maximum Sequence(线段树)
题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=6047 题目: Maximum Sequence Time Limit: 4000/2000 MS (J ...
- Codeforces 438D The Child and Sequence - 线段树
At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...
随机推荐
- PHP继承及实现
php学习已经有一段时间了,来对之前的知识积累做个记录. php实现单继承和多实现.单继承: 一个类只能有一个extends 抽象类 ,多实现 :一个类可以implements 多个接口 举个简单的栗 ...
- Jmeter发送SOAP请求对WebService接口测试
Jmeter发送SOAP请求对WebService接口测试 1.测试计划中添加一个用户自定义变量 2.HTTP信息头管理器,添加Content-Tpe, application/soap+xml;c ...
- 所有硬币组合问题——动态规划hdu2069
Problem Description Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cen ...
- Notepad++正则表达式合并多行代码为1行
有时候你想要缩减代码行数,多行并1行,像网页流行的JS代码,查看时多见这种情况,但是有时你想把多行switch case缩成1行,再手动分开,每个case一行. 这种对齐方式似乎在日式程序员的代码中经 ...
- Waiter.js
var Waiter = function() { var dfd = [], doneArr = [], failArr = [], slic ...
- Struts2之处理结果集
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE struts PUBLIC "-/ ...
- stl(优先队列操作)
http://codeforces.com/gym/101911/problem/C Recently Monocarp has created his own mini-laboratory! Th ...
- Using Keyboard Navigation
http://technet.microsoft.com/en-us/library/cc939835.aspx
- 【学习总结】Python-3-字符串运算符与字符串格式化
参考: 本教程的评论区:菜鸟教程-Python3-Python数字 字符串运算符: 实例变量a值为字符串 "Hello",b变量值为 "Python": 字符串 ...
- JSON对象与JavaScript对象的区别
//js对象的字面量表示法: var people1={ name:'hehe', age:18 }; //json的格式是: var people1={ "name":'hehe ...