【HDU5306】【DTOJ2481】Gorgeous Sequence【线段树】
题目大意:给你一个序列a,你有三个操作,0: x y t将a[x,y]和t取min;1:x y求a[x,y]的最大值;2:x y求a[x,y]的sum
题解:首先很明显就是线段树裸题,那么考虑如何维护
区间最大值和区间sum很好维护,0操作不好做,那么考虑怎么快速解决0操作
很容易想到维护区间最大值和区间是否全部相同,这是一个做法,但是时间复杂度上却不正确,但也给了我们一个思路,可以通过维护最大值之类的数来加快操作
一个不行就两个,于是考虑维护次大值,那么每次0操作就有三种情况,一:比区间最大值还大,那么直接返回;二:大于区间次大值小于区间最大值,那么可以直接修改区间;三:小于区间次大值,那么继续递归下去;
这么做是可行的,在更新区间时因为要维护sum值,于是多维护一个区间max有多少个即可
证明略,时间复杂度o(nlog^2n)——来源:吉老师
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#define ll long long
using namespace std;
int T,n,m;
ll a[];
class Segtree
{
public:
ll sum[*],mx[*],smx[*],cnt[*],fl[*]; void pushup(int pos)
{
sum[pos]=sum[pos<<]+sum[pos<<|];
if(mx[pos<<]>mx[pos<<|])
{
mx[pos]=mx[pos<<];
cnt[pos]=cnt[pos<<];
if(mx[pos<<|]>smx[pos<<])smx[pos]=mx[pos<<|];
else smx[pos]=smx[pos<<];
}
if(mx[pos<<]<mx[pos<<|])
{
mx[pos]=mx[pos<<|];
cnt[pos]=cnt[pos<<|];
if(mx[pos<<]>smx[pos<<|])smx[pos]=mx[pos<<];
else smx[pos]=smx[pos<<|];
}
if(mx[pos<<]==mx[pos<<|])
{
mx[pos]=mx[pos<<];
cnt[pos]=cnt[pos<<]+cnt[pos<<|];
if(smx[pos<<]>smx[pos<<|])smx[pos]=smx[pos<<];
else smx[pos]=smx[pos<<|];
}
}
void pushdown(int pos)
{
if(fl[pos]>=)
{
if(mx[pos<<]>fl[pos])
{
sum[pos<<]-=(mx[pos<<]-fl[pos])*cnt[pos<<];
fl[pos<<]=mx[pos<<]=fl[pos];
}
if(mx[pos<<|]>fl[pos])
{
sum[pos<<|]-=(mx[pos<<|]-fl[pos])*cnt[pos<<|];
fl[pos<<|]=mx[pos<<|]=fl[pos];
}
fl[pos]=-;
}
}
void build(int l,int r,int pos)
{
if(l==r)
{
sum[pos]=mx[pos]=a[l];
cnt[pos]=;
fl[pos]=smx[pos]=-;
return;
}
int mid=l+r>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
pushup(pos);
fl[pos]=-;
}
void change(int l,int r,int al,int ar,ll v,int pos)
{
int mid=l+r>>;
if(l==al && r==ar)
{
if(v>=mx[pos])return;
if(smx[pos]<v && v<mx[pos])
{
sum[pos]-=(mx[pos]-v)*cnt[pos];
fl[pos]=mx[pos]=v;
return;
}
change(l,mid,al,mid,v,pos<<);
change(mid+,r,mid+,ar,v,pos<<|);
pushup(pos);
return;
}
pushdown(pos);
if(ar<=mid)change(l,mid,al,ar,v,pos<<);
if(al>mid)change(mid+,r,al,ar,v,pos<<|);
if(al<=mid && ar>mid){change(l,mid,al,mid,v,pos<<);change(mid+,r,mid+,ar,v,pos<<|);}
pushup(pos);
}
ll askmax(int l,int r,int al,int ar,int pos)
{
if(l==al && r==ar)return mx[pos];
int mid=l+r>>;
pushdown(pos);
if(ar<=mid)return askmax(l,mid,al,ar,pos<<);
if(al>mid)return askmax(mid+,r,al,ar,pos<<|);
if(al<=mid && ar>mid)
{
ll t1=askmax(l,mid,al,mid,pos<<),t2=askmax(mid+,r,mid+,ar,pos<<|);
return t1>t2?t1:t2;
}
}
ll asksum(int l,int r,int al,int ar,int pos)
{
if(l==al && r==ar)return sum[pos];
int mid=l+r>>;
pushdown(pos);
if(ar<=mid)return asksum(l,mid,al,ar,pos<<);
if(al>mid)return asksum(mid+,r,al,ar,pos<<|);
if(al<=mid && ar>mid)return asksum(l,mid,al,mid,pos<<)+asksum(mid+,r,mid+,ar,pos<<|);
}
}segtree;
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%lld",&a[i]);
segtree.build(,n,);
int mod,x,y;ll t;
while(m--)
{
scanf("%d",&mod);
if(mod==)
{
scanf("%d%d%lld",&x,&y,&t);
segtree.change(,n,x,y,t,);
}
if(mod==)
{
scanf("%d%d",&x,&y);
printf("%lld\n",segtree.askmax(,n,x,y,));
}
if(mod==)
{
scanf("%d%d",&x,&y);
printf("%lld\n",segtree.asksum(,n,x,y,));
}
}
}
return ;
}
心得:有时候多维护一个次大值能解决很多问题,更多时候在不知道如何证明时间复杂度的情况下往往维护次大值是正确的
【HDU5306】【DTOJ2481】Gorgeous Sequence【线段树】的更多相关文章
- 【hdu5306】Gorgeous Sequence 线段树区间最值操作
题目描述 给你一个序列,支持三种操作: $0\ x\ y\ t$ :将 $[x,y]$ 内大于 $t$ 的数变为 $t$ :$1\ x\ y$ :求 $[x,y]$ 内所有数的最大值:$2\ x\ y ...
- HDU 5306 Gorgeous Sequence[线段树区间最值操作]
Gorgeous Sequence Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDOJ 5306 Gorgeous Sequence 线段树
http://www.shuizilong.com/house/archives/hdu-5306-gorgeous-sequence/ Gorgeous Sequence Time Limit: 6 ...
- HDU - 5306 Gorgeous Sequence 线段树 + 均摊分析
Code: #include<algorithm> #include<cstdio> #include<cstring> #define ll long long ...
- 2016暑假多校联合---Rikka with Sequence (线段树)
2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...
- Wow! Such Sequence!(线段树4893)
Wow! Such Sequence! Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸
D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...
- hdu4893Wow! Such Sequence! (线段树)
Problem Description Recently, Doge got a funny birthday present from his new friend, Protein Tiger f ...
- HDU 6047 Maximum Sequence(线段树)
题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=6047 题目: Maximum Sequence Time Limit: 4000/2000 MS (J ...
- Codeforces 438D The Child and Sequence - 线段树
At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...
随机推荐
- Android中国官网资源网站
现在android开发者官网在中国有中文版已经不是太大的新闻,为了平时查询资料和学习方便,记录如下. PS:建议用Google浏览器浏览,你懂的!! https://developers.google ...
- php面向对象的重写与重载
重写: 就是当子类继承父类的一些方法后,子类又在其内部定义了相同的方法,则这个新定义的方法会覆盖继承而来的父类的方法,子类只能调用其内部定义的方法. 有以下几点要求: 1.当一个父类和子类有一个方法, ...
- vm虚拟机用批处理启动和关闭
title vmware 虚拟机开启中 cls&&echo 正在开启VMware虚拟机,请稍候... "D:\vmware\vmware.exe" -x " ...
- jmeter动态修改线程组参数
jmeter非gui模式修改线程属性进行性能测试 在使用JMeter进行性能测试自动化时,如果按照平常的非Gui模式就是脚本每次修改参数都需要在gui模式下修改保存之后,然后在非gui模式之后运行,这 ...
- C语言readdir()函数:读取目录函数
相关函数:open, opendir, closedir, rewinddir, seekdir, telldir, scandir 头文件:#include <sys/types.h> ...
- Git013--多人协作
Git--多人协作 本文来自于:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/ ...
- 爬虫(五)—— 解析库(二)beautiful soup解析库
目录 解析库--beautiful soup 一.BeautifulSoup简介 二.安装模块 三.Beautiful Soup的基本使用 四.Beautiful Soup查找元素 1.查找文本.属性 ...
- Action 分离
原文地址:http://www.cnblogs.com/giggle/p/5380832.html?utm_source=tuicool&utm_medium=referral 本处摘要备注. ...
- #python# error:UnicodeEncodeError: 'latin-1' codec can't encode character '\u2026' in position 30: ordinal not in range(256)
headers={ 'Referer':'https://www.lagou.com/jobs/lis-rds=&fromSearch=true&suginput=', 'User-A ...
- python学习三十三天函数匿名函数lambda用法
python函数匿名函数lambda用法,是在多行语句转换一行语句,有点像三元运算符,只可以表示一些简单运算的,lambda做一些复杂的运算不太可能.分别对比普通函数和匿名函数的区别 1,普通的函数用 ...