propositional variables (or statement variables),

letters used for propositional variables are p, q, r, s, . . . . The truth value of a proposition is true, denoted by T,

if it is a true proposition, and the truth value of a proposition is false, denoted by F, if it is a false proposition.

DEFINITION 1

Let p be a proposition. The negation of p, denoted by ¬p (also denoted by p),is the statement “It is not the case that p.”

The proposition ¬p is read “not p.”The truth value of the negation of p, ¬p, is the opposite of the truth value of p.

DEFINITION 2

Let p and q be propositions. The conjunction of p and q,denoted by p ∧ q, is the proposition “p and q.”

The conjunction p ∧ q is true when both p and q are true and is false otherwise.

DEFINITION 3

Let p and q be propositions. The disjunction of p and q,denoted by p ∨ q, is the proposition “p or q.”

The disjunction p ∨ q is false when both p and q are false and is true otherwise.

DEFINITION 5

Let p and q be propositions. The conditional statement p → q is the proposition “if p, then q.”

The conditional statement p → q is false when p is true and q is false,and true otherwise.

In the conditional statement p → q, p is called the hypothesis (orantecedent or premise)

DEFINITION 6

Let p and q be propositions. The biconditional statement p ↔ q is the proposition “p if and only if q.”

The biconditional statement p ↔ q is true when p and q have the same truth values, and is false otherwise.

Biconditional statements are also called bi-implications.

Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.1 Propositional Logic的更多相关文章

  1. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.4 Predicates and Quantifiers

    The statements that describe valid input are known as preconditions and the conditions that the outp ...

  2. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.3 Propositional Equivalences

    DEFINITION 1 A compound proposition that is always true,no matter what the truth values of the propo ...

  3. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.2 Applications of Propositional Logic

    Translating English Sentences System Specifications Boolean Searches Logic Puzzles Logic Circuits

  4. 经典书Discrete.Mathematics上的大神

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  5. Linux新手必看:浅谈如何学习linux

    本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix问题1:版本的选择 北美用redhat,欧洲用SuSE, ...

  6. 新手学习Linux之快速上手分析

    一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix 问题1:版本的选择 北美用redhat,欧洲用SuSE,桌面mandrake较多,而debian是技术最先 ...

  7. [转载] Linux新手必看:浅谈如何学习linux

    本文转自 https://www.cnblogs.com/evilqliang/p/6247496.html 本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习 ...

  8. 计算机程序设计的史诗TAOCP

    倘若你去问一个木匠学徒:你需要什么样的工具进行工作,他可能会回答你:“我只要一把锤子和一个锯”.但是如果你去问一个老木工或者是大师级的建筑师,他会告诉你“我需要一些精确的工具”.由于计算机所解决的问题 ...

  9. Globalization Guide for Oracle Applications Release 12

    Section 1: Overview Section 2: Installing Section 3: Configuring Section 4: Maintaining Section 5: U ...

随机推荐

  1. imagecreatefromjpeg(): gd-jpeg: JPEG library reports unrecoverable

    错误: imagecreatefromstring(): Empty string or invalid image 或者 imagesx() expects parameter 1 to be re ...

  2. MyEclipse内存不足?这里有你想要的问题解决方案

    [MyEclipse CI 2019.4.0安装包下载] No.1 打开MyEclipse目录下的myeclipse.ini文件 在后面修改下面几个属性: vmargs Xms512m ( Java能 ...

  3. thinkphp5杂谈--项目架构和模板搭建(view视角)

    nginx网站配置 项目架构 项目文件夹 视图模板 一种出幺蛾子的访问办法 访问相关特色模块并渲染视图

  4. Gym-100923A-Por Costel and Azerah(DP)

    链接: https://vjudge.net/problem/Gym-100923A 题意: Por Costel the Pig has received a royal invitation to ...

  5. 如何使用Android Studio与夜神模拟器开发调试

    (1)运行夜神模拟器, (2)打开命令行窗口, (3)打开到夜神安装目录(如cd D:\Program Files\NOX\Nox\bin)本人安装的目录, (4)执行命令:nox_adb.exe c ...

  6. BZOJ 1901 洛谷 P2617 ZOJ 2112 Dynamic Rankings

    以下时空限制来自zoj Time limit 10000 ms Memory limit 32768 kB OS Linux Source Online Contest of Christopher' ...

  7. sh_02_判断年龄改进版

    sh_02_判断年龄改进版 # 输入用户年龄 age = int(input("请输入年龄:")) # 判断是否满 18 岁 (>=) if age >= 18: # ...

  8. MySQL_约束

    MySQL中约束的作用是对表中的数据进行限定,保证数据的正确性,完整性,有效性. 分类:(1)主键约束 primary key(2)非空约束 not NULL (3)唯一约束 unique (4)外键 ...

  9. 【技术分享:python 应用之三】使用 python 修改 excel 表格的 sheet 名称

    原始需求:已经下载好了 Excel 文件,但是 Excel 里的 sheet 的名称想要修改一下,比如原本默认的是sheet1,需要修成“DNEWCD_JQJSHMX”.需求比较简单,直接上代码吧! ...

  10. Oracle 字符串拼接会出现0自动忽略,解决方案

    解决方案 ,),'||num,num) from table_name 参考:https://blog.csdn.net/menghuannvxia/article/details/73089903