题意:给定一个11~nn的全排列AA,若干个询问,每次询问给出一个区间[l,r][l,r],要求得出∑l≤i<j≤r  gcd(Ai,Aj)的值。

解法:这题似乎做的人不是很多,蒟蒻当然不会做只能看题解了qwq,目前看到一个比较好的题解是https://blog.csdn.net/Maxwei_wzj/article/details/79355887

没什么好说的,首先必须先推式子。

那么这一坨东西到底是什么意思呢?其实就是对于每个数d,sigma[d|ai][d|aj] 是从区间[l,r]中选两个数且都有约数d的方案数,然后phi(d)乘以这个方案数,对所有的d求和就是答案了。

然后问题是怎么求从区间[l,r]中选两个数且都有约数d的方案数?考虑[l,r]中的数存在约数d的数个数为c[d],那么显然方案数就是c[d]*(c[d]-1)/2。那么问题又变成了怎么快速维护[l,r]中的数存在约数d的数个数呢?对于这题只有询问的题目我们可以考虑使用莫队算法:先预处理每个数的约数,然后每增加/减少一个数就枚举它的所有约数计算贡献即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=2e4+,B=;
#define bel(x) ((x-1)/B+1)
int n,m,a[N]; LL sum,c[N],ans[N];
struct query{
int id,l,r;
bool operator < (const query &rhs) const {
return bel(l)==bel(rhs.l) ? r<rhs.r : l<rhs.l; //询问排序顺序
}
}q[N]; bool notp[N];
int pnum, p[N], phi[N];
vector<int> fac[N];
void prework(int n) {
memset(notp, , sizeof notp); pnum = ;
phi[]=;
for (int i = ; i <= n; i++) {
if (!notp[i]) {
p[pnum++] = i;
phi[i] = i - ;
}
for (int j = ; j < pnum && i * p[j] <= n; j++) {
int k = i * p[j]; notp[k] = ;
if (i % p[j] == ) {
phi[k] = phi[i] * p[j];
break;
}
phi[k] = phi[i] * (p[j] - );
}
}
for (int i=;i<=n;i++)
for (int j=i;j<=n;j+=i)
fac[j].push_back(i);
} void add(int x) { //添加操作
for (int i=;i<fac[x].size();i++) {
int y=fac[x][i];
sum+=c[y]*phi[y];
c[y]++;
}
} void del(int x) { //删除操作
for (int i=;i<fac[x].size();i++) {
int y=fac[x][i];
c[y]--;
sum-=c[y]*phi[y];
}
} void solve() { //莫队算法
int pl=,pr=; sum=;
for (int i=;i<=m;i++) {
while (pl<q[i].l) del(a[pl++]);
while (pl>q[i].l) add(a[--pl]);
while (pr<q[i].r) add(a[++pr]);
while (pr>q[i].r) del(a[pr--]);
ans[q[i].id]=sum;
}
} int main()
{
prework();
int T,cas=; cin>>T;
while (T--) {
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d",&a[i]);
scanf("%d",&m);
for (int i=;i<=m;i++) scanf("%d%d",&q[i].l,&q[i].r),q[i].id=i;
sort(q+,q+m+);
for (int i=;i<=n;i++) c[i]=;
solve();
printf("Case #%d:\n",++cas);
for (int i=;i<=m;i++) printf("%lld\n",ans[i]);
}
return ;
}

HDU-4676 Sum Of Gcd 莫队+欧拉函数的更多相关文章

  1. hdu 4676 Sum Of Gcd 莫队+phi反演

    Sum Of Gcd 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4676 Description Given you a sequence of ...

  2. hdu 4676 Sum Of Gcd 莫队+数论

    题目链接 给n个数, m个询问, 每个询问给出[l, r], 问你对于任意i, j.gcd(a[i], a[j]) L <= i < j <= R的和. 假设两个数的公约数有b1, ...

  3. 【HDU4676】Sum Of Gcd(莫队+欧拉函数)

    点此看题面 大致题意: 多组询问,求\(\sum_{i=L}^R\sum_{j=i+1}^Rgcd(i,j)\). 推式子 这道题我们可以考虑,每个因数\(d\)被统计答案的次数,肯定与其出现次数有关 ...

  4. GCD nyoj 1007 (欧拉函数+欧几里得)

    GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor ...

  5. HDU 4676 Sum Of Gcd 【莫队 + 欧拉】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=4676 Sum Of Gcd Time Limit: 10000/5000 MS (Java/Others ...

  6. hdu 1695 GCD 容斥+欧拉函数

    题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, ...

  7. HDU 1695 GCD (容斥原理+欧拉函数)

    题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y) ...

  8. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  9. HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to ...

随机推荐

  1. -bash: findstr: command not found 问题解决

    今天有个任务,需要获取apk的版本信息,百度之后说是之下下面的命令就行 adb shell dumpsys package com.baidu.searchbox | findstr versionC ...

  2. 【leetcode】712. Minimum ASCII Delete Sum for Two Strings

    题目如下: 解题思路:本题和[leetcode]583. Delete Operation for Two Strings 类似,区别在于word1[i] != word2[j]的时候,是删除word ...

  3. webdriver显式和隐式等待、强制等待

    implicitly_wait() 方法是隐式等待,用来设置超时,一般把implicitly_wait()方法调用在加载测试地址后,等待所测试的应用程序加载WebDriverWait() 是显式等待, ...

  4. 8.为什么IntelliJ IDEA首次加载比较慢

    double shift 很快,是有缓存,和快速索引 这面这二个文件,配置会缓存:会越来越在,

  5. Leetcode_395. Longest Substring with At Least K Repeating Characters_[Devide and Conquer]

    题目链接 对一个字符串,找出一个最长的子串长度,这个子串中所有字符出现的次数至少为k. 1.滑动窗口 一开始把题目看成了,子串中每个字符至多出现k次.如果是这样,那么是一道典型的滑动窗口的题目. 然而 ...

  6. Nginx的启动、停止与重启---linux

    一.选定安装文件目录 可以选择任何目录 cd /usr/local/src 二.安装PCRE库 ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcr ...

  7. Python_009(函数,命名空间)

    一.函数 1.函数格式: #定义函数: def function(): 函数体 return 返回值 #调用函数: function() ret = function() 这是得到返回值. 这里是用关 ...

  8. 【前端技术】一篇文章搞掂:uni-app

    语法 //列表遍历,遍历数组,第一个参数为数组中元素,可以给第二个参数作为索引值 <view v-for="(item, itemIndex) in card" :key=& ...

  9. 洛谷P1378 油滴扩展(搜索)

    洛谷P1378 油滴扩展 直接暴力搜索更新答案就可以了. 时间复杂度为 \(O(n!)\) . #include<stdio.h> #include<stdlib.h> #in ...

  10. PHP之导出CSV文件

    序言 Q1:什么是csv文件? A1:csv即 comma-separated values ,逗号分隔值.是一种通用的相对简单地文件格式,目前被较为广泛的使用.其最广泛的应用就是用来转移表数据. “ ...