Escape

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 10382    Accepted Submission(s): 2485

Problem Description
2012 If this is the end of the world how to do? I do not know how. But now scientists have found that some stars, who can live, but some people do not fit to live some of the planet. Now scientists want your help, is to determine what all of people can live in these planets.
 
Input
More set of test data, the beginning of each data is n (1 <= n <= 100000), m (1 <= m <= 10) n indicate there n people on the earth, m representatives m planet, planet and people labels are from 0. Here are n lines, each line represents a suitable living conditions of people, each row has m digits, the ith digits is 1, said that a person is fit to live in the ith-planet, or is 0 for this person is not suitable for living in the ith planet.
The last line has m digits, the ith digit ai indicates the ith planet can contain ai people most..
0 <= ai <= 100000
 
Output
Determine whether all people can live up to these stars
If you can output YES, otherwise output NO.
 
Sample Input
1 1
1
1
 
2 2
1 0
1 0
1 1
 
Sample Output
YES
NO
 
Source
 
Recommend
lcy
 
 

题意:

  给你n个人m个星球,和第i个人能否适应第j个星球,1为适应,0为不适应。问你全部人能不能去星球上。

  矩阵建边,跑一下二分图多重匹配。如果这个人无法去任意星球,直接break。

  

普通版:1560ms

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
using namespace std;
typedef long long LL;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
const LL INF = 0x7fffffff;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+;
const int maxn = +;
const int maxm = +;
int n, m, uN, vN;
int g[maxn][maxm];
int linker[maxm][maxn];
bool used[maxm];
int num[maxm];
bool dfs(int u)
{
for(int v = ;v<vN;v++)
if(g[u][v] && !used[v]){
used[v] = true;
if(linker[v][]<num[v]){
linker[v][++linker[v][]] = u;
return true;
}
for(int i = ;i<=num[];i++)
if(dfs(linker[v][i])){
linker[v][i] = u;
return true;
}
}
return false;
}
int hungary()
{
int res = ;
for(int i = ;i<vN;i++){
linker[i][] = ;
}
for(int u = ;u<uN;u++){
ms(used, false);
if(dfs(u)) res++;
else return res;
}
return res;
}
void init() {
ms(g, );
}
void solve() {
for(int i = ;i<n;i++){
for(int j = ;j<m;j++){
int x;
scanf("%d", &x);
if(x==){
g[i][j] = ;
}
else{
g[i][j] = ;
}
}
}
for(int i = ;i<m;i++)
scanf("%d", &num[i]);
vN = m, uN = n;
int ans = hungary();
// printf("%d\n", ans);
if(ans==n){
printf("YES\n");
}
else{
printf("NO\n");
}
}
int main() {
#ifdef LOCAL
freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
while(~scanf("%d%d", &n, &m)){
init();
solve();
}
return ;
}
fread版:249ms
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
using namespace std;
typedef long long LL;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
const LL INF = 0x7fffffff;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+;
const int maxn = +;
const int maxm = +;
//输入挂
const int MAXBUF = ;
char buf[MAXBUF], *ps = buf, *pe = buf+;
inline void rnext()
{
if(++ps == pe)
pe = (ps = buf)+fread(buf,sizeof(char),sizeof(buf)/sizeof(char),stdin);
}
template <class T>
inline bool in(T &ans)
{
ans = ;
T f = ;
if(ps == pe) return false;//EOF
do{
rnext();
if('-' == *ps) f = -;
}while(!isdigit(*ps) && ps != pe);
if(ps == pe) return false;//EOF
do
{
ans = (ans<<)+(ans<<)+*ps-;
rnext();
}while(isdigit(*ps) && ps != pe);
ans *= f;
return true;
}
const int MAXOUT=;
char bufout[MAXOUT], outtmp[],*pout = bufout, *pend = bufout+MAXOUT;
inline void write()
{
fwrite(bufout,sizeof(char),pout-bufout,stdout);
pout = bufout;
}
inline void out_char(char c){ *(pout++) = c;if(pout == pend) write();}
inline void out_str(char *s)
{
while(*s)
{
*(pout++) = *(s++);
if(pout == pend) write();
}
}
template <class T>
inline void out_int(T x) {
if(!x)
{
out_char('');
return;
}
if(x < ) x = -x,out_char('-');
int len = ;
while(x)
{
outtmp[len++] = x%+;
x /= ;
}
outtmp[len] = ;
for(int i = , j = len-; i < j; i++,j--) swap(outtmp[i],outtmp[j]);
out_str(outtmp);
}
//end
int n, m, uN, vN;
int g[maxn][maxm];
int linker[maxm][maxn];
bool used[maxm];
int num[maxm];
bool dfs(int u)
{
for(int v = ;v<vN;v++)
if(g[u][v] && !used[v]){
used[v] = true;
if(linker[v][]<num[v]){
linker[v][++linker[v][]] = u;
return true;
}
for(int i = ;i<=num[];i++)
if(dfs(linker[v][i])){
linker[v][i] = u;
return true;
}
}
return false;
}
int hungary()
{
int res = ;
for(int i = ;i<vN;i++){
linker[i][] = ;
}
for(int u = ;u<uN;u++){
ms(used, false);
if(dfs(u)) res++;
else return res;
}
return res;
}
void init() {
ms(g, );
}
void solve() {
int x;
for(int i = ;i<n;i++){
for(int j = ;j<m;j++){
in(x);
if(x==){
g[i][j] = ;
}
else{
g[i][j] = ;
}
}
}
for(int i = ;i<m;i++)
in(num[i]);
vN = m, uN = n;
int ans = hungary();
if(ans==n){
out_str("YES");out_char('\n');
}
else{
out_str("NO");out_char('\n');
}
}
int main() {
#ifdef LOCAL
freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
while(in(n)&&in(m)){
init();
solve();
}
write();
return ;
}

HDU 3605 Escape(二分图多重匹配问题)的更多相关文章

  1. HDU(3605),二分图多重匹配

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3605 Escape Time Limit: 4000/2000 MS (Java/Others)    ...

  2. HDU3605 Escape —— 二分图多重匹配

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3605 Escape Time Limit: 4000/2000 MS (Java/Others)    ...

  3. hdu3605 Escape 二分图多重匹配/最大流

    2012 If this is the end of the world how to do? I do not know how. But now scientists have found tha ...

  4. hdu 3605 Escape 二分图的多重匹配(匈牙利算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3605 Escape Time Limit: 4000/2000 MS (Java/Others)    ...

  5. HDU - 3605 Escape (缩点+最大流/二分图多重匹配)

    题意:有N(1<=N<=1e5)个人要移民到M(1<=M<=10)个星球上,每个人有自己想去的星球,每个星球有最大承载人数.问这N个人能否移民成功. 分析:可以用最大流的思路求 ...

  6. hdu 3605(二分图多重匹配)

    Escape Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  7. HDU 1669 二分图多重匹配+二分

    Jamie's Contact Groups Time Limit: 15000/7000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/ ...

  8. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

  9. hihoCoder 1393 网络流三·二分图多重匹配(Dinic求二分图最大多重匹配)

    #1393 : 网络流三·二分图多重匹配 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 学校的秋季运动会即将开始,为了决定参赛人员,各个班又开始忙碌起来. 小Hi和小H ...

随机推荐

  1. 【FICO系列】SAP FICO 基本概念

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[FICO系列]SAP FICO 基本概念   ...

  2. [开发技巧]·如何让离线安装Python包

    [开发技巧]·如何让离线安装Python包 1.问题描述 PyPI(Python Package Index)是python官方的第三方库的仓库,所有人都可以下载第三方库或上传自己开发的库到PyPI. ...

  3. Oracle的substr函数简单用法(转)

    转:http://www.cnblogs.com/nicholas_f/articles/1526063.html substr(字符串,截取开始位置,截取长度) //返回截取的字 substr('H ...

  4. pycharm中的Terminal 中无法使用git的问题

    1.先找到git的安装路径,建议使用Everything工具 2.打开pycharm中的setting > tools > Terminal 3.把git的安装路径加上启动文件 bash. ...

  5. python字典-基础

    一.解释 像列表一样,“字典”是许多值的集合.但不像列表的下标,字典的索引可以 使用许多不同数据类型,不只是整数.字典的索引被称为“键”,键及其关联的值 称为“键-值”对. 二.列表创建方式 1. I ...

  6. 版本控制工具 GIT 简要教程

    一,Git 简介 其实这个就不用说了 但是国际惯例还是介绍一下吧; Git 是一个开源的分布式版本控制系统,用于敏捷 高效地处理任何或小或大的项目. Git 是 Linus Torvalds 为了帮助 ...

  7. 什么是 Java 对象深拷贝?面试必问!

    点击上方蓝色链接,关注并"设为星标" Java干货,每天及时推送 介绍 在Java语言里,当我们需要拷贝一个对象时,有两种类型的拷贝:浅拷贝与深拷贝. 浅拷贝只是拷贝了源对象的地址 ...

  8. Python自学第二天学习之《元组与字典》

    一.  元组:tuple类型,元组一级元素 不能修改 不能增加 不能删除,是有序的. 格式 :tu=(1,2,3,4,5,6) 1.类型转换: #字符串转换成元组 b=“123” c=tuple(b) ...

  9. service worker介绍

    原文:Service workers explained 译者:neal1991 welcome to star my articles-translator, providing you advan ...

  10. for循环延伸

    经典面试题解析: for(var i = 1 ; i < 5 ; i++){ console.log(i) } //1 2 3 4 ------------------------------- ...