洛谷 - P3469 - BLO-Blockade - 割点
https://www.luogu.org/problem/P3469
翻译:一个原本连通的无向图,可以删除图中的一个点,求因为删除这个点所导致的不连通的有序点对的数量。或者说,删去这个点之后,各个连通分量的大小的乘积之和?
当然是考虑新学的Tarjan法求割点。一遍Tarjan给每个点记录他是不是割点。然后第二遍的时候对每个割点,统计它分割出的各个子树(及其父亲,假如有的话)这些连通块之间的贡献。
注意无向图是不需要栈的,因为无向图不存在横向边的说法。
错误代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 100005;
int n;
vector<int> G[MAXN];
vector<int> T[MAXN];
int dfn[MAXN], low[MAXN], dfncnt;
bool cut[MAXN];
int siz[MAXN];
ll ans[MAXN];
void tarjan(int u, int p) {
low[u] = dfn[u] = ++dfncnt;
siz[u] = 1;
cut[u] = false;
if(p != -1)
T[u].push_back(p);
int ch = 0;
for(auto v : G[u]) {
if(!dfn[v]) {
tarjan(v, u);
T[u].push_back(v);
low[u] = min(low[u], low[v]);
siz[u] += siz[v];
if(p != -1 && low[v] >= dfn[u])
cut[u] = true;
else if(p == -1)
ch++;
} else
low[u] = min(low[u], dfn[v]);
}
if(p == -1 && ch >= 2)
cut[u] = true;
}
bool vis[MAXN];
void dfs(int u, int p) {
vis[u] = 1;
for(auto v : T[u]) {
if(!vis[v])
dfs(v, u);
}
if(cut[u]) {
ll sum = 0;
ans[u] = 0;
for(auto v : T[u]) {
if(v == p) {
sum += n - siz[u];
ans[u] -= 1ll * (n - siz[u]) * (n - siz[u]);
} else {
sum += siz[v];
ans[u] -= 1ll * siz[v] * siz[v];
}
}
ans[u] += sum * sum + 2ll * sum;
} else
ans[u] = 2ll * (n - 1);
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int m;
scanf("%d%d", &n, &m);
for(int i = 1, u, v; i <= m; ++i) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
tarjan(1, -1);
dfs(1, -1);
for(int i = 1; i <= n; ++i) {
printf("%lld\n", ans[i]);
}
return 0;
}
错误原因:某个节点u的子树v中可能出现了反向边(反向到u之前),这棵子树则和u节点的父亲节点等形成了连通块,假如要分段统计,则要在u节点标记哪些子树才是真正会被分开的子树。
那么在这个问题里面对于根节点来说,每棵子树是必定会被分开的,可以统一处理掉。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 100005;
int n;
vector<int> G[MAXN];
int dfn[MAXN], low[MAXN], dfncnt;
ll ans[MAXN];
int siz[MAXN];
void tarjan(int u, int p) {
low[u] = dfn[u] = ++dfncnt;
siz[u] = 1;
ll sum=0;
int ch = 0;
for(auto v : G[u]) {
if(!dfn[v]) {
tarjan(v, u);
low[u] = min(low[u], low[v]);
siz[u] += siz[v];
if(low[v] >= dfn[u]){
ans[u]+=sum*siz[v];
sum+=siz[v];
}
} else
low[u] = min(low[u], dfn[v]);
}
ans[u]+=(n-1-sum)*sum;
ans[u]+=(n-1);
ans[u]*=2ll;
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int m;
scanf("%d%d", &n, &m);
for(int i = 1, u, v; i <= m; ++i) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
tarjan(1, -1);
for(int i = 1; i <= n; ++i)
printf("%lld\n", ans[i]);
return 0;
}
洛谷 - P3469 - BLO-Blockade - 割点的更多相关文章
- 洛谷 P3469 [POI2008]BLO-Blockade (Tarjan,割点)
P3469 [POI2008]BLO-Blockade https://www.luogu.org/problem/P3469 题目描述 There are exactly nn towns in B ...
- 【洛谷 P3469】[POI2008]BLO-Blockade(割点)
题目链接 题意:一个无向联通图,求删去每个点及其所有边后有多少有序点对的连通性发生了变化. Tarjan求割点的例题.. 如果当前点不是割点,那么它对整个图的连通性不产生影响,只有自己与其他\(n-1 ...
- 【洛谷P3469】BLO
题目大意:给定 N 个点,M 条边的联通无向图,求出对于每个点来说,将与这个点相连的所有边都去掉后,会少多少个联通的点对 (x,y). 题解:连通性问题从 DFS 树的角度进行考虑.对于 DFS 树当 ...
- 「洛谷P3469」[POI2008]BLO-Blockade 解题报告
P3469[POI2008]LO-Blockade 题意翻译 在Byteotia有n个城镇. 一些城镇之间由无向边连接. 在城镇外没有十字路口,尽管可能有桥,隧道或者高架公路(反正不考虑这些).每两个 ...
- 洛谷P3469[POI2008]BLO-Blockade
题目 割点模板题. 可以将图中的所有点分成两部分,一部分是去掉之后不影响图的连通性的点,一部分是去掉之后影响连通性的点,称其为割点. 然后分两种情况讨论,如果该点不是割点,则最终结果直接加上2*(n- ...
- 【洛谷P3469】[POI2008]BLO-Blockade
BLO-Blockade 题目链接 若一个点为割点:统计出每个子树的大小,两两相乘再相加, 再加上n-1,为这个点与其他点的拜访数, 因为拜访是互相的,最后再乘二即可 若一个点不是割点:只有(n-1) ...
- 【洛谷P3388】(模板)割点
[模板]割点 割点集合:一个顶点集合V,删除该集合的所有定点以及与这些顶点相连的边后,原图不连通,就称集合V为割点集合 点连通度:最小割点集合中的顶点数 边连通度:最小割边集合中的边数 割点:割点集合 ...
- 洛谷 [P3496] BLO
割点 首先 tarjan 求割点, 对于不是割点的点, 答案是 2 * (n-1) 有序,所以要乘 2 对于是割点的点, 答案是删去该点后所有连通块的个数加上 n-1 在乘 2 #include &l ...
- 洛谷 P3469 [POI2008]BLO-Blockade 题解
一道经典的割点例题,用size数组记录该子树有多少个节点,sum是这棵搜索树上有多少个节点,sum*(n-sum-1)是将点删掉后的数对数量. #include<iostream> #in ...
随机推荐
- 我不熟悉的set
同样的我着重介绍那些我不怎么用到的系列,同时,常用的我就点一下. 我们都知道set底层是用红黑树实现的,红黑树是一种已排序的树,所以我们通过迭代器来访问节点元素的时候,并不可以改变它,如果随意改变,那 ...
- Springboot(九).多文件上传下载文件(并将url存入数据库表中)
一. 文件上传 这里我们使用request.getSession().getServletContext().getRealPath("/static")的方式来设置文件的存储 ...
- [洛谷P5361][SDOI2019]热闹又尴尬的聚会:构造题
分析 构造方法 (截图自UOJ群) 可以使用std::set维护这个过程,不过据说可以做到\(O(n+m)\).. 正确性证明 题目中的要求等价于\((p+1)(q+1) > n\) 设每次找出 ...
- nginx负载均衡 理解与测试
Nginx负载均衡概述 Web服务器,直接面向用户,往往要承载大量并发请求,单台服务器难以负荷,我使用多台WEB服务器组成集群,前端使用Nginx负载均衡,将请求分散的打到我们的后端服务器集群中,实现 ...
- go.js-拖拽流程图插件
1.去除水印 在文件中搜索7eba17a4ca3b1a8346,找到类似a.Jv=d[w.Jg("7eba17a4ca3b1a8346")][w.Jg("78a118b7 ...
- 关于Hibernate中Java实体类加载出现序列化异常
晚上跟着教程敲网上商城项目的时候(ssh框架写的),碰到了一个问题,就是如题所示的序列化异常问题,这个问题纠结了很久,最后发现了一个解决方法,虽然这篇文章可能几乎不会被人访问到,但是还是要写出来! 其 ...
- Retrofitting Analysis
Retrofitting Analysis To figure out the process of retrofitting[1] objective updating, we do the fol ...
- python - jpype模块,python调用java的接口
转载自: http://www.cnblogs.com/junrong624/p/5278457.html https://www.cnblogs.com/fanghao/p/7745356.html ...
- Nova rebuild for boot from volume issue
目录 文章目录 目录 Nova boot from volume Rebuild Instance Rebuild for boot from volume Nova boot from volume ...
- Activity启动场景Task分析(二)
场景分析 下面通过启动Activity的代码来分析一下: 1.桌面 首先,我们看下处于桌面时的状态,运行命令: adb shell dumpsys activity 结果如下 ACTIVITY MAN ...