带劲的计算几何【这一定是我WC之前开的最后一道计几!!!

每个点画个圆然后看一下交点 然后判断是多边形内还是多边形外

这个就是取圆上中点然后射线法

eps我1e-8才过 不知道为啥有的人说只能开1e-3

写了三天带劲= =

还有注意long double!附了一组数据~

//Love and Freedom.
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 20021225
#define ll long long
#define eps 1e-8
#define mxn 510
#define db long double
using namespace std; const db pi = acosl(-1.0); struct poi
{
db x,y;
poi(){}
poi(db _x,db _y){x=_x,y=_y;}
}; typedef poi vec; bool operator ==(vec a,vec b){return a.x==b.x&&a.y==b.y;}
vec operator +(vec a,vec b){return vec(a.x+b.x,a.y+b.y);}
vec operator -(vec a,vec b){return vec(a.x-b.x,a.y-b.y);}
vec operator *(vec a,db b){return vec(a.x*b,a.y*b);}
db cross(vec a,vec b){return a.x*b.y-a.y*b.x;}
db value(vec a,vec b){return a.x*b.x+a.y*b.y;}
db len(vec a){return a.x*a.x+a.y*a.y;}
db ang(vec a){return atan2(a.y,a.x);} struct line
{
poi p; vec v; db ang;
line(){}
line(poi _p,poi _v)
{
p=_p; v=_v;
ang = atan2(v.y,v.x);
}
}li[mxn]; db cir[mxn]; int cnt,n,m;
poi mid[mxn]; db section(line a,line b)
{
db k = cross(a.v+a.p-b.p,a.p-b.p)/(cross(a.v+a.p-b.p,b.v)+cross(b.v,a.p-b.p));
return k;
} void get(line a,db r)
{
db c = - r*r + len(a.p);
db aa = len(a.v);
db b = 2.0*(a.v.x*a.p.x+a.v.y*a.p.y);
db delta = b*b - 4.0 * aa * c;
if(delta < 0) return ;
delta = sqrt(delta);
db k1 = (-b + delta)/(2.0*aa);
if(abs(delta)<eps)
{
poi tmp = a.p+a.v*k1;
if(k1>-eps && k1-1.0<eps) cir[++cnt] =atan2(tmp.y,tmp.x);
return;
}
db k2 = (-b-delta)/(2.0*aa);
poi tmp = a.p+a.v*k1;
if(k1>-eps && k1-1.0<eps) cir[++cnt] = atan2(tmp.y,tmp.x);
tmp = a.p+a.v*k2;
if(k2>-eps && k2-1.0<eps) cir[++cnt] = atan2(tmp.y,tmp.x);
} void put(poi a)
{
printf("p===%lf %lf\n",a.x,a.y);
} void putl(line a)
{
printf("ls--------------\n");
put(a.p); put(a.v); printf("%lf\n",a.ang);
printf("le--------------\n");
} bool between(line a,poi b)
{
int tmp=0;
if(a.v.x <= 0.0)
{
if(b.x <= a.p.x && b.x >= a.p.x+a.v.x) tmp++;
}
else
{
if(b.x >= a.p.x && b.x <= a.p.x+a.v.x) tmp++;
}
if(a.v.y <= 0.0)
{
if(b.y <= a.p.y && b.y >= a.p.y+a.v.y) tmp++;
}
else
{
if(b.y >= a.p.y && b.y <= a.p.y+a.v.y) tmp++;
}
return tmp==2;
} bool check(poi x)
{
for(int i=1;i<=m;i++)
if(between(li[i],x) && abs(cross(x-li[i].p,li[i].v))<eps)
return 0;
int cer = 0;
line tmp = line(x,poi(2794406.11,-2564800.0132));
for(int i=1;i<=m;i++)
{
db w = section(tmp,li[i]);
db ww = section(li[i],tmp);
if( ww>1.0 || ww<0.0 || w>1.0 || w<0.0)
continue;
cer++;
}
if(cer&1) return 1;
return 0;
} bool cmp(poi a,poi b)
{
return ang(a) < ang(b) || (abs(ang(a)-ang(b))<eps&& cross(a,b)>eps);
} bool same(poi a,poi b)
{
return abs(a.x-b.x)<eps && abs(a.y-b.y) <eps;
}
poi enemy[mxn],stk[mxn]; db makecircle(int id,db r)
{
cnt = 0; db ans = 0.0;
for(int i=1;i<=m;i++)
get(li[i],r);
if(!cnt)
{
if(check(enemy[id])) return 2*pi;
return 0.0;
}
sort(cir+1,cir+cnt+1);
int tot = cnt; cnt=1;
for(int i=2;i<=tot;i++)
if(abs(cir[i]-cir[i-1])>eps)
cir[++cnt] = cir[i];
cir[cnt+1] = cir[1] + 2*pi;
for(int i=1;i<=cnt;i++)
{
db theta = (cir[i] + cir[i+1]); theta = theta/2.0;
mid[i] = vec(r*cosl(theta),r*sinl(theta));
}
if(cnt==2)
{
if(check(mid[1]))
{
db ang = cir[2] - cir[1];
ans += ang;
}
return ans;
}
for(int i=1;i<=cnt;i++)
{
if(check(mid[i]))
{
db ang = cir[i+1] - cir[i];
ans += ang;
}
}
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%Lf%Lf",&enemy[i].x,&enemy[i].y);
for(int i=1;i<=m;i++)
scanf("%Lf%Lf",&stk[i].x,&stk[i].y);
for(int i=1;i<m;i++)
li[i]=line(stk[i],stk[i+1]-stk[i]);
li[m] = line(stk[m],stk[1]-stk[m]);
db full,r,ans=0.0;
for(int i=1;i<=n;i++)
{
r = sqrtl(len(enemy[i]));
if(r<eps)
{
if(check(poi(0,0))) ans += 1.00000;
continue;
}
full = 2*pi;
ans += makecircle(i,r)/full;
}
printf("%.5Lf\n",ans);
return 0;
}
/**
1 7
1 1
2 1
-1 -1
-1 1
1 1
1 2
3 1
2 -1
*/

LOJ6437 PKUSC2018 PKUSC的更多相关文章

  1. 【loj6437】 【PKUSC2018】 PKUSC 计算几何

    题目大意:给你一个m个点的简单多边形.对于每个点i∈[1,n],作一个以O点为原点且过点i的圆,求该圆在多边形内的圆弧长度/圆长. 其中n≤200,m≤500. 我们将n个点分开处理. 首先,我们要判 ...

  2. LOJ6437. 「PKUSC2018」PKUSC [计算几何]

    LOJ 思路 显然多边形旋转可以变成点旋转,不同的点的贡献可以分开计算. 然后就变成了要求一个圆在多边形内的弧长. 考虑把交点全都求出来,那么两个交点之间的状态显然是相同的,可以直接把圆弧上的中点的状 ...

  3. [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC

    [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC 试题描述 九条可怜是一个爱玩游戏的女孩子. 最近她在玩一个无双割草类的游戏,平面上有 \(n\) 个敌人,每一个敌人的坐标为 ...

  4. 【LOJ】#6437. 「PKUSC2018」PKUSC

    题解 我们把这个多边形三角形剖分了,和统计多边形面积一样 每个三角形有个点是原点,把原点所对应的角度算出来,记为theta 对于一个点,相当于半径为这个点到原点的一个圆,圆弧上的弧度为theta的一部 ...

  5. loj#6437. 「PKUSC2018」PKUSC(计算几何)

    题面 传送门 题解 计算几何的东西我好像都已经忘光了-- 首先我们可以把原问题转化为另一个等价的问题:对于每一个敌人,我们以原点为圆心,画一个经过该点的圆,把这个圆在多边形内部的圆弧的度数加入答案.求 ...

  6. [LOJ6437]PKUSC

    旋转多边形是没有前途的,我们考虑旋转敌人,那么答案就是所有人的可行区间长度之和除以$2\pi$ 首先对每个敌人找到那些旋转后会落到多边形上的角度,实际上就是圆和一些线段求交,解方程即可,注意判一下落在 ...

  7. 「PKUSC2018」PKUSC

    传送门 Solution  考虑求每个点的贡献 等价于一个以OA长为半径的圆心为原点的圆在多边形内的弧对应的角度/\(2\pi\) 求弧度可以利用三角剖分 在原点的点要特判,采用射线法就可以了 Cod ...

  8. LOJ#6437. 「PKUSC2018」PKUSC

    题面 题意转化为: 判断每个点所在的圆有多长的弧度角位于多边形内部. 然后就很暴力了. 每个点P,直接找到多边形和这个圆的所有交点,按照距离P的角度排序. 找交点,直接联立二元二次方程组.... 需要 ...

  9. 【LOJ6436】【PKUSC2018】神仙的游戏(NTT)

    [LOJ6436][PKUSC2018]神仙的游戏(NTT) 题面 LOJ 题解 看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题 吓得我也赶快看了看\(PKUSC\)都有些什么神仙题 然 ...

随机推荐

  1. dos编辑文件上传到unix系统多余^M删除方法

    linux上的文件sz到window编辑后多出^M, 方法一: 1.grep -anR '^M' filename |wc -l2.crontab -e 或vim filename3.:set ff  ...

  2. scau 17967 大师姐唱K的固有结界

    17967 大师姐唱K的固有结界 该题有题解 时间限制:1000MS  内存限制:65535K 提交次数:41 通过次数:8 收入:107 题型: 编程题   语言: G++;GCC;VC Descr ...

  3. webpack-使用html-webpack-plugin和ejs-loader将侧栏、头部、底部公共html做成模板,并生成合并后的html页面

    在学习前端自动化之前一直使用 PHP,JSP 将在每个页面将头部.侧栏.底部等部分引入,现在前端 "娱乐圈" 一直噼里啪啦的每天出新东西,自从接触了前端自动化我就觉得这种工作可以交 ...

  4. day35—JavaScript操作元素(创建、删除)

    转行学开发,代码100天——2018-04-20 JavaScript对DOM元素的创建.删除操作. 1.创建DOM元素 appendChild方法 createElement(ochild); op ...

  5. centos 7 环境准备工作

    删除自带jdk: rpm -e --nodeps `rpm -qa | grep java` 打开 /etc/ 目录下的 profile 文件: vi /etc/profile 将如下代码追加到 pr ...

  6. HTML--JS 定时刷新、时钟、倒计时

    <html> <head> <title>定时刷新时间</title> <script language="JavaScript&quo ...

  7. 剑指offer第二版面试题5:从尾到头打印链表(JAVA版)

    题目描述: 输入一个链表,从尾到头打印链表每个节点的值.返回新链表. import java.util.Stack; //定义链表结构 class ListNode { int value; List ...

  8. upc组队赛17 Stone Game【极小值】

    Stone Game 题目链接 题目描述 Alice and Bob are always playing game! The game today is about taking out stone ...

  9. Adam Optimization Algorithm

    曾经多次看到别人说起,在选择Optimizer的时候默认就选Adam.这样的建议其实比较尴尬,如果有一点科学精神的人,其实就会想问为什么,并搞懂这一切,这也是我开这个Optimizer系列的原因之一. ...

  10. Linux下复杂PC问题——多进程编程/信号量通信/共享存储区

    进程相关函数 pid_t fork(); 头文件:unistd.h,sys/types.h 作用:建立一个新进程(子进程),子进程与原进程(父进程)共享代码段,并拥有父进程的其他资源(数据.堆栈等)的 ...