[CF1204E]Natasha,Sasha and the Prefix Sums 题解
前言
本文中的排列指由n个1, m个-1构成的序列中的一种。
题目这么长不吐槽了,但是这确实是一道好题。
题解
DP题话不多说,直接状态/变量/转移。
状态
我们定义f表示"最大prefix sum"之和
变量
f[i][j]为有i个1,j个-1的"最大prefix sum"之和
转移
我们记C[i][j]为\(\left(\begin{matrix} i \\ j\end{matrix}\right)\),那么:
\]
k[i][j]表示有i个1,j个-1的最大前缀和刚好为0的排列的个数
那么上式是如何推出的呢?
我们固定地认为每当新加入一个数的时候将该数插入序列的最前方,这种设定仍然保证了动规涵盖所有珂能的排列。
如果我们插入的是一个1,不管先前的序列排列如何,最大prefix sum一定会加1,由于i-1个1,j个-1对应的序列有\(\left(\begin{matrix} i+j-1 \\ i\end{matrix}\right)\)种排列方法,所以当前状态增加的贡献为\(\left(\begin{matrix} i+j-1 \\ i\end{matrix}\right)\)。
如果我们插入的是一个-1,情况于上面是完全相同的,但是注意到,如果有一种排列它本身的"最大prefix sum"为0,那么我们不应当把它计入贡献(因为"最大prefix sum"最小为0),所以要减去k[i][j]。
组合数显然珂以通过杨辉三角递推解决。
那么现在我们的问题就在于k[i][j]如何处理。
我们先给出k[i][j]的递推式。
\]
这个递推式珂能有点晦涩,但是一种简单的理解方式是找出由当前状态向外转移的方程式,然后再转化为以上方程式。
于是我们解决了此题。
代码
没有卡常,见谅。
#include <cstdio>
#define MOD 998244853
long long f[2005][2005];
long long k[2005][2005];
long long C[4005][4005];
int main(){
int n, m; scanf("%d %d", &n, &m);
for (register int i = 0; i <= n; ++i)
for (register int j = 0; j <= m; ++j){
if (i == 0) k[i][j] = 1;
else if (j == 0) k[i][j] = 0;
else if (i > j) k[i][j] = 0;
else k[i][j] = (k[i - 1][j] + k[i][j - 1]) % MOD;
}
C[0][0] = C[1][0] = C[1][1] = 1;
for (register int i = 2; i <= n + m; ++i){
C[i][0] = 1;
for (register int j = 1; j <= i; ++j)
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MOD;
}
for (register int i = 0; i <= n; ++i)
f[i][0] = i, f[0][i] = 0;
for (register int i = 1; i <= n; ++i)
for (register int j = 1; j <= m; ++j)
f[i][j] = ((f[i - 1][j] + C[i + j - 1][i - 1]) % MOD + (f[i][j - 1] - C[i + j - 1][j - 1] + k[i][j - 1] + MOD) % MOD) % MOD;
printf("%I64d", f[n][m]);
return 0;
}
[CF1204E]Natasha,Sasha and the Prefix Sums 题解的更多相关文章
- CF1204E Natasha, Sasha and the Prefix Sums (卡塔兰数推理)
题面 题解 把题意变换一下,从(0,0)走到(n,m),每次只能网右或往上走,所以假设最大前缀和为f(n),那么走的时候就要到达但不超过 y = x-f(n) 这条线, 我们可以枚举答案,然后乘上方案 ...
- CF1204E Natasha, Sasha and the Prefix Sums(组合数学)
做法一 \(O(nm)\) 考虑\(f(i,j)\)为i个+1,j个-1的贡献 \(f(i-1,j)\)考虑往序列首添加一个\(1\),则贡献\(1\times\)为序列的个数:\(C(j+i-1,i ...
- CodeForces 1204E"Natasha, Sasha and the Prefix Sums"(动态规划 or 组合数学--卡特兰数的应用)
传送门 •参考资料 [1]:CF1204E Natasha, Sasha and the Prefix Sums(动态规划+组合数) •题意 由 n 个 1 和 m 个 -1 组成的 $C_{n+m} ...
- CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)
题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...
- E. Natasha, Sasha and the Prefix Sums
http://codeforces.com/contest/1204/problem/E 给定n个 1 m个 -1的全排 求所有排列的$f(a) = max(0,max_{1≤i≤l} \sum_{j ...
- Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学
Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学 [Problem Description] ...
- 【题解】【数组】【Prefix Sums】【Codility】Genomic Range Query
A non-empty zero-indexed string S is given. String S consists of N characters from the set of upper- ...
- 【题解】【数组】【Prefix Sums】【Codility】Passing Cars
A non-empty zero-indexed array A consisting of N integers is given. The consecutive elements of arra ...
- Codeforces 837F Prefix Sums
Prefix Sums 在 n >= 4时候直接暴力. n <= 4的时候二分加矩阵快速幂去check #include<bits/stdc++.h> #define LL l ...
随机推荐
- CSP-J 2019 T3 纪念品
\(\mathfrak{a}\).反思: 通过这道题成功发现自己的背包还是很差\(w\): 可能这是我\(gu\)了好久好久博客的报应叭 就在做这个题的时候,自己连背包\(dp\)的思想都忘了 背包可 ...
- python 变量 (全面不一样的变量)
变量 一:什么是变量? 变量即变化的量,核心是"变"与"量"二字,变即变化,量即衡量状态 变:状态是会发生改变的 量:记录现实世界中的状态,让计算机能够像人一样 ...
- jQuery扁平化风格手风琴菜单
在线演示 本地下载
- Win32汇编-创建窗体代码
1.一个最简单的窗体的创建 ;>>>>>>>>>>>>>>>>>>>>>& ...
- 计算机网络--TCP三次握手和四次挥手
TCP(传输控制协议) TCP(Transmission Control Protocol 传输控制协议)是一种面向连接的.可靠的.基于字节流的传输层通信协议.通过三次握手建立连接,通讯完成时要拆除连 ...
- MySQL性能优化(五):分表
原文:MySQL性能优化(五):分表 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/vbi ...
- spring boot 发布自动生成svn版本号
通过Jenkins构建发布spring boot项目时,常常有需求,需要把Svn的版本号更新到项目的版本上,通过有两种解决方案: 1. 通过shell命令对配置文件中的指定字符进行替换, 如: 配置文 ...
- 113、stack的优势 (Swarm20)
参考https://www.cnblogs.com/CloudMan6/p/8157391.html stack 将应用所包含的service,依赖的secret volume 等资源,以及他们之 ...
- 07 Nginx负载均衡
1.负载均衡的实现. 1.准备三台虚拟机,比如 192.168.119.146 提供资源 192.168.119.147 提供nginx的负载均衡 192.168.119.148 提供资源 2.分别配 ...
- calc,support,media各自的含义及用法
@support:用于检测浏览器是否支持CSS某个属性,即条件判断,如果支持某个属性,可以写一套样式,如果不支持某属性,提供另一套样式作为替补. calc():用于计算动态函数值,支持“+”,“-”, ...