链接:http://poj.org/problem?id=1556

The Doors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 6216   Accepted: 2495

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows.


4 2 7 8 9 
7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06 ////////////////////////////////////////////////////////////////////
这题处理起来挺难的,要把输入的点存到图里,用Dijkstra求出最短路径,存图的过程是,判断任意两点连成的线,横坐标不能相同,并且如果,横坐标与线上的横坐标不相同,就要判断是否相交,相交则行不通
否则存图,用Dijkstra搜出最短的路径即可
还有,要注意细节
 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <math.h>
#include <algorithm> #define eps 1e-6
#define INF 1000000000
typedef struct point
{
double x,y;
}point; typedef struct beline
{
point st,ed;
}beline; using namespace std; point p[];
double mp[][];
double d[];
int visit[]; bool dy(double x,double y){ return x > y+eps; }
bool xy(double x,double y){ return x < y-eps; }
bool dyd(double x,double y){ return x > y-eps; }
bool xyd(double x,double y){ return x < y+eps; }
bool dd(double x,double y){ return fabs(x - y)<eps; } double crossProduct(point a,point b,point c)
{
return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
}
double Dist(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} bool onSegment(point a,point b,point c)
{
double maxx=max(a.x,b.x);
double maxy=max(a.y,b.y);
double minx=min(a.x,b.x);
double miny=min(a.y,b.y);
if(dd(crossProduct(a,b,c),0.0)&&dy(c.x,minx)&&xy(c.x,maxx)
&&dy(c.y,miny)&&xy(c.y,maxy))
return true;
return false;
} bool segIntersect(point p1,point p2,point p3,point p4)
{
double d1 = crossProduct(p3,p4,p1);
double d2 = crossProduct(p3,p4,p2);
double d3 = crossProduct(p1,p2,p3);
double d4 = crossProduct(p1,p2,p4);
if(xy(d1*d2,0.0)&&xy(d3*d4,0.0))
return true;
if(dd(d1,0.0)&&onSegment(p3,p4,p1))
return true;
if(dd(d2,0.0)&&onSegment(p3,p4,p2))
return true;
if(dd(d3,0.0)&&onSegment(p1,p2,p3))
return true;
if(dd(d4,0.0)&&onSegment(p1,p2,p4))
return true;
return false;
} void Dijkstra(int n)
{
int i,y;
memset(visit,,sizeof(visit));
for(i=; i<n; i++)
d[i] = mp[][i];
d[] = ;
for(i=; i<n; i++)
{
int m=INF,x;
{
for(y=; y<n; y++)
{
if(!visit[y] && d[y]<=m)
{
m = d[ x = y ];
}
}
visit[x]=;
for(y=; y<n; y++)
{
if(!visit[y] && d[y] > d[x]+mp[x][y])
{
d[y] = d[x] + mp[x][y];
}
}
}
}
} int main()
{
int n,m,i,j,k,t;
double a,b,c,d1,e;
beline li[];
beline tmp;
p[].x=;p[].y=;//freopen("in.txt","r",stdin);
while(scanf("%d",&n)!=EOF && n!=-)
{
for(i=; i<; i++)
for(j=; j<; j++)
mp[i][j] = INF;
int cas=,css=;
for(i=; i<n; i++)
{
scanf("%lf%lf%lf%lf%lf",&a,&b,&c,&d1,&e);
li[css].st.x=a;
li[css].st.y=;
p[cas].x=a; li[css].ed.x=a;
p[cas++].y=b;li[css++].ed.y=b;
p[cas].x=a; li[css].st.x=a;
p[cas++].y=c;li[css].st.y=c;
p[cas].x=a; li[css].ed.x=a;
p[cas++].y=d1;li[css++].ed.y=d1;
p[cas].x=a; li[css].st.x=a;
p[cas++].y=e;li[css].st.y=e;
li[css].ed.x=a;
li[css++].ed.y=;
}
p[cas].x=10.0;p[cas].y=5.0;
for(i=; i<=cas; i++)
{
for(j=i+; j<=cas; j++)
{
int ok=;
for(k=; k<css; k++)
{
if(dd(p[i].x,p[j].x)||!dd(p[i].x,li[k].st.x)&&!dd(p[j].x,li[k].st.x)&&(segIntersect(p[i],p[j],li[k].st,li[k].ed)))
{
ok=;
break;
}
}
if(!ok)
{
mp[j][i] = mp[i][j] = Dist(p[i],p[j]);//printf("%d %d %lf ^^\n",i,j,mp[i][j]);
}
}
}
Dijkstra(cas+);
printf("%.2lf\n",d[cas]);
}
return ;
}

poj 1556 (Dijkstra + Geometry 线段相交)的更多相关文章

  1. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  2. POJ 1556 计算几何 判断线段相交 最短路

    题意: 在一个左下角坐标为(0,0),右上角坐标为(10,10)的矩形内,起点为(0,5),终点为(10,5),中间会有许多扇垂直于x轴的门,求从起点到终点在能走的情况下的最短距离. 分析: 既然是求 ...

  3. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  4. POJ 1556 The Doors(线段交+最短路)

    #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm& ...

  5. POJ 1066 Treasure Hunt(线段相交判断)

    Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4797   Accepted: 1998 Des ...

  6. POJ 2653 Pick-up sticks(线段相交)

    题意:给定n个木棍依次放下,要求最终判断没被覆盖的木棍是哪些. 思路:快速排斥以及跨立实验可以判断线段相交. #include<algorithm> #include<cstdio& ...

  7. poj 3304(直线与线段相交)

    传送门:Segments 题意:线段在一个直线上的摄影相交 求求是否存在一条直线,使所有线段到这条直线的投影至少有一个交点 分析:可以在共同投影处作原直线的垂线,则该垂线与所有线段都相交<==& ...

  8. [poj 1127]Jack Straws[线段相交][并查集]

    题意: 给出一系列线段,判断某两个线段是否连通. 思路: 根据线段相交情况建立并查集, 在同一并查集中则连通. (第一反应是强连通分量...实际上只要判断共存即可, 具体的方向啊是没有关系的..) 并 ...

  9. POJ 2653 Pick-up sticks [线段相交 迷之暴力]

    Pick-up sticks Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 12861   Accepted: 4847 D ...

随机推荐

  1. TI BLE CC2541的I2C主模式

    由于要写TM1680, 写命令跟写数据, 所以需要使用CC2541的I2C, 2541是有硬件I2C的. tm1680.c: #include "tm1680.h" //TM168 ...

  2. C# 控制连接超时

    首先连接超时分为三种,TCP Connection to SQL Server -> SqlConnection.Open -> SqlCommand.Execute先说第二种超时,sql ...

  3. ExtJS4.2 根据数据库记录构建树形菜单

    背景:最近用ExtJS4.2做一个系统,需要在前端展示资源菜单,为树形结构,该树形结构是从数据库动态加载的. ExtJS的树形结构大致有两种情况: 1.静态树形结构,此处不多说,看API就能简单明白: ...

  4. 【Pro ASP.NET MVC 3 Framework】.学习笔记.9.SportsStore:Securing the Administration Features

    1 设置表单身份认证 因为ASP.NET MVC基于ASP.NET平台的核心,所以我们可以使用ASP.NET Form的身份认证,这是保持用户登录轨迹通用的方法.现在介绍最基本的配置. 在Web.co ...

  5. PHP编写的图片验证码类文件分享方法

    适用于自定义的验证码类! <?php/* * To change this license header, choose License Headers in Project Propertie ...

  6. thinkphp模板中截取中文字符串的方法分享

    前段用thinkphp写了一个系统,感觉thinkphp学起来比较容易,开发起来了比较顺手,其中一个关键的因素就是它的模版引擎相当强大,使用方法跟smarty类似,在模版中还可以用php代码,有模版包 ...

  7. PHP serialize & JSON 解析

    对于JSON(JavaScript Object Notation)大家应该不陌生,它是一种轻量级的数据交换格式.易于人阅读和编写.同时也易于机器解析和生成.它基于JavaScript Program ...

  8. mount/umount系统调用

    转载自:http://blog.sina.com.cn/s/blog_6385c7310100iqmn.html 功能描述: mount挂上文件系统,umount执行相反的操作.    用法:   # ...

  9. Python相对路径转绝对路径,绝对路径转相对路径

    1.绝对路径转相对路径 print os.path.relpath("d:/MyProj/MyFile.txt") #..\MyProj\MyFile.txt 是根据当前路径的相对 ...

  10. Socket状态变迁图

    在一些防火墙或端口管理工具中经常会看到连接状态为CLOSED CLOSE_WITE LAST_ACK等的进程, 虽然状态就那么很少的几个, 而且看字面意思也能猜个大概, 但没做过Socket编程的朋友 ...