Map/Reduce的类体系架构
Map/Reduce的类体系架构
Map/Reduce案例解析:
先以简单的WordCount例程, 来讲解如何去描述Map/Reduce任务.
public static void main(String[] args) throws Exception {
// *) 创建Configuration类, 用于获取Map/Reduce的执行环境
Configuration conf = new Configuration();
// *) 对命令行参数进行解析
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
// *) 创建Job任务实例
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
// *) 设置Mapper类
job.setMapperClass(TokenizerMapper.class);
// *) 设置Combiner类
job.setCombinerClass(IntSumReducer.class);
// *) 设置Reducer类
job.setReducerClass(IntSumReducer.class);
// *) 设置输出结果的Key类型为Text
job.setOutputKeyClass(Text.class);
// *) 设置输出结果的Value类型为Text
job.setOutputValueClass(IntWritable.class); // *) 设置InputFormat和OutputFormat的HDFS路径
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
// *) 等待Map/Reduce任务结束
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
评注: 具体的一个Job需要设置Mapper和Reducer类, 来决定如何处理数据. 而对于InputFormat/OutputFormat则决定了其数据输入/输出源.
Mapper类的解析
Mapper抽象类, 引入内部抽象类Context, 通过采用模板方法的设计模式.
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { public abstract class Context
implements MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
} protected void setup(Context context)
throws IOException, InterruptedException {
} protected void map(KEYIN key, VALUEIN value, Context context)
throws IOException, InterruptedException {
context.write((KEYOUT) key, (VALUEOUT) value);
} protected void cleanup(Context context)
throws IOException, InterruptedException {
} // *) 采用模板方法来实现
public void run(Context context)
throws IOException, InterruptedException {
} }
评注: setup扮演map初始化的工作, cleanup是map任务结束后的工作, 而map则是具体key/value对操作的处理函数.
来具体看下map函数中精华run函数的定义:
// *) map阶段的初始化工作
setup(context);
try {
// *) 循环遍历key/value对
while (context.nextKeyValue()) {
// *) 进行map回调处理
map(context.getCurrentKey(),
context.getCurrentValue(), context);
}
} finally {
// *) map阶段的清除工作
cleanup(context);
}
评注: 采用类模板方法的设计模式(setup, map, cleanup, 通过run函数合理的串联)
InputFormat类的构成
InputFormat中最重要的两个类是InputSplit和RecordReader.
*) InputSplit: 是Map数据源的一个分片, 对应于一个具体map任务.
*) RecordReader: 针对一个具体的InputSplit, 封装的一个记录读取器.
具体代码如下所示:
public abstract class InputFormat<K, V> { // *) 获取InputSplit, 用于Map数据的拆分依据
public abstract List<InputSplit> getSplits(JobContext context)
throws IOException, InterruptedException;
// *) 针对InputSplit, 获取RecordReader类实例
public abstract RecordReader<K,V> createRecordReader(
InputSplit split, TaskAttemptContext context)
throws IOException, InterruptedException; }
评注: InputSplit数决定Map个数, 同时决定了数据的划分和规模, 而RecordReader则决定Key/Value的格式和具体数值. 这些概念对于数据的生成至关重要.
Reducer/OutputFormat
Reducer类和Mapper类定义类似, OutputFormat类与InputFormat类似, 简略之.
总结:
该文还没有完结, 先占个坑....
Map/Reduce的类体系架构的更多相关文章
- Map/Reduce个人实战--生成数据测试集
背景: 在大数据领域, 由于各方面的原因. 有时需要自己来生成测试数据集, 由于测试数据集较大, 因此采用Map/Reduce的方式去生成. 在这小编(mumuxinfei)结合自身的一些实战经历, ...
- Hadoop体系架构简介
今天跟一个朋友在讨论hadoop体系架构,从当下流行的Hadoop+HDFS+MapReduce+Hbase+Pig+Hive+Spark+Storm开始一直讲到HDFS的底层实现,MapReduce ...
- mapreduce: 揭秘InputFormat--掌控Map Reduce任务执行的利器
随着越来越多的公司采用Hadoop,它所处理的问题类型也变得愈发多元化.随着Hadoop适用场景数量的不断膨胀,控制好怎样执行以及何处执行map任务显得至关重要.实现这种控制的方法之一就是自定义Inp ...
- 分布式基础学习(2)分布式计算系统(Map/Reduce)
二. 分布式计算(Map/Reduce) 分 布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件 系统,很 ...
- [转]OpenContrail 体系架构文档
OpenContrail 体系架构文档 英文原文:http://opencontrail.org/opencontrail-architecture-documentation/ 翻译者:@KkBLu ...
- 分布式基础学习【二】 —— 分布式计算系统(Map/Reduce)
二. 分布式计算(Map/Reduce) 分布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件系统,很大程 ...
- Thrift之TProcess类体系原理及源码详细解析
我的新浪微博:http://weibo.com/freshairbrucewoo. 欢迎大家相互交流,共同提高技术. 之前对Thrift自动生成代码的实现细节做了详细的分析,下面进行处理层的实现做详细 ...
- Kafka体系架构详细分解
我的个人博客排版更舒服: https://www.luozhiyun.com/archives/260 基本概念 Kafka 体系架构 Kafka 体系架构包括若干 Producer.若干 Broke ...
- Python-函数式编程-map reduce filter lambda 三元表达式 闭包
lambda 匿名函数,核心是作为算子,处理逻辑只有一行但具有函数的特性,核心用于函数式编程中 三元运算符 其实本质上是if分支的简化版,满足条件返回 if 前面的值,不满足条件返回 else后面的值 ...
随机推荐
- LinearLayout练习
<?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...
- TableLayout练习
<?xml version="1.0" encoding="utf-8"?> <TableLayout xmlns:android=" ...
- sdut 2609 A-Number and B-Number
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2609 数位DP 以前没怎么做过,自己憋了半天, ...
- 启动项目报错Error: listen EADDRINUSE
我在使用elasticsearch的kibana插件时候,有一次启动,遇到这个错误: Error: listen EADDRINUSE 它的意思是,端口5601被其他进程占用. 故而,需要kill掉那 ...
- Redis系列-存储篇string主要操作函数小结
通过上两篇的介绍,我们的redis服务器基本跑起来.db都具有最基本的CRUD功能,我们沿着这个脉络,开始学习redis丰富的数据结构之旅,当然先从最简单且常用的string开始. 1.新增 a)se ...
- LICEcap
LICEcap是一款简洁易用的动画屏幕录制软件,它可将屏幕录像的内容直接保存为高质量(每帧颜色数量可超过256)GIF动态图片格式.并且支持特别标记鼠标操作动态效果.
- wp8.1 Study6: App的生命周期管理
一.概述 应用程序的生命周期详解可以参照Windows8.1开发中msdn文档http://msdn.microsoft.com/library/windows/apps/hh464925.aspx ...
- Python inspect
inspect — Inspect live objects New in version 2.1. The inspect module provides several useful functi ...
- 用Ogre实现《天龙八部》场景中水面(TerrainLiquid)详解
本文主要讲的是<天龙八部>游戏中水面(TerrainLiquid)的具体实现,使用C++,Ogre1.6. 天龙的水面做的比较简单,虽然没有倒影,但动态纹理+深度图做出的效果还行,看着不是 ...
- android自学笔记一
android是什么我自闭不必多说,我们挑精华整理 一.android体系架构: android从下而上分为四层: (1)分别是linux操作系统及驱动(C语言实现) (2)本地代码(C/C++)框架 ...