Map/Reduce的类体系架构

Map/Reduce案例解析:

  先以简单的WordCount例程, 来讲解如何去描述Map/Reduce任务.

public static void main(String[] args) throws Exception {
  // *) 创建Configuration类, 用于获取Map/Reduce的执行环境
  Configuration conf = new Configuration();
  // *) 对命令行参数进行解析
  String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
  if (otherArgs.length != 2) {
    System.err.println("Usage: wordcount <in> <out>");
  System.exit(2);
  }
  // *) 创建Job任务实例
  Job job = new Job(conf, "word count");
  job.setJarByClass(WordCount.class);
  // *) 设置Mapper类
  job.setMapperClass(TokenizerMapper.class);
  // *) 设置Combiner类
  job.setCombinerClass(IntSumReducer.class);
  // *) 设置Reducer类
  job.setReducerClass(IntSumReducer.class);
  // *) 设置输出结果的Key类型为Text
  job.setOutputKeyClass(Text.class);
  // *) 设置输出结果的Value类型为Text
  job.setOutputValueClass(IntWritable.class);   // *) 设置InputFormat和OutputFormat的HDFS路径
  FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
  FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
  // *) 等待Map/Reduce任务结束
  System.exit(job.waitForCompletion(true) ? 0 : 1);
}

  评注: 具体的一个Job需要设置Mapper和Reducer类, 来决定如何处理数据. 而对于InputFormat/OutputFormat则决定了其数据输入/输出源.

Mapper类的解析
  Mapper抽象类, 引入内部抽象类Context, 通过采用模板方法的设计模式.

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {

  public abstract class Context
      implements MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
  }   protected void setup(Context context)
      throws IOException, InterruptedException {
  }   protected void map(KEYIN key, VALUEIN value, Context context)
      throws IOException, InterruptedException {
    context.write((KEYOUT) key, (VALUEOUT) value);
  }   protected void cleanup(Context context)
      throws IOException, InterruptedException {
  }   // *) 采用模板方法来实现
  public void run(Context context)
      throws IOException, InterruptedException {
  } }

  评注: setup扮演map初始化的工作, cleanup是map任务结束后的工作, 而map则是具体key/value对操作的处理函数.
  来具体看下map函数中精华run函数的定义:

// *) map阶段的初始化工作
setup(context);
try {
  // *) 循环遍历key/value对
  while (context.nextKeyValue()) {
    // *) 进行map回调处理
    map(context.getCurrentKey(),
      context.getCurrentValue(), context);
  }
} finally {
  // *) map阶段的清除工作
  cleanup(context);
}

  评注: 采用类模板方法的设计模式(setup, map, cleanup, 通过run函数合理的串联)

InputFormat类的构成
  InputFormat中最重要的两个类是InputSplit和RecordReader.
  *) InputSplit: 是Map数据源的一个分片, 对应于一个具体map任务.
  *) RecordReader: 针对一个具体的InputSplit, 封装的一个记录读取器.
  具体代码如下所示:

public abstract class InputFormat<K, V> {

  // *) 获取InputSplit, 用于Map数据的拆分依据
  public abstract List<InputSplit> getSplits(JobContext context)
        throws IOException, InterruptedException;
  // *) 针对InputSplit, 获取RecordReader类实例
  public abstract RecordReader<K,V> createRecordReader(
      InputSplit split, TaskAttemptContext context)
        throws IOException, InterruptedException; }

  评注: InputSplit数决定Map个数, 同时决定了数据的划分和规模, 而RecordReader则决定Key/Value的格式和具体数值. 这些概念对于数据的生成至关重要.

Reducer/OutputFormat
  Reducer类和Mapper类定义类似, OutputFormat类与InputFormat类似, 简略之.

总结:

该文还没有完结, 先占个坑....

Map/Reduce的类体系架构的更多相关文章

  1. Map/Reduce个人实战--生成数据测试集

    背景: 在大数据领域, 由于各方面的原因. 有时需要自己来生成测试数据集, 由于测试数据集较大, 因此采用Map/Reduce的方式去生成. 在这小编(mumuxinfei)结合自身的一些实战经历, ...

  2. Hadoop体系架构简介

    今天跟一个朋友在讨论hadoop体系架构,从当下流行的Hadoop+HDFS+MapReduce+Hbase+Pig+Hive+Spark+Storm开始一直讲到HDFS的底层实现,MapReduce ...

  3. mapreduce: 揭秘InputFormat--掌控Map Reduce任务执行的利器

    随着越来越多的公司采用Hadoop,它所处理的问题类型也变得愈发多元化.随着Hadoop适用场景数量的不断膨胀,控制好怎样执行以及何处执行map任务显得至关重要.实现这种控制的方法之一就是自定义Inp ...

  4. 分布式基础学习(2)分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分 布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件 系统,很 ...

  5. [转]OpenContrail 体系架构文档

    OpenContrail 体系架构文档 英文原文:http://opencontrail.org/opencontrail-architecture-documentation/ 翻译者:@KkBLu ...

  6. 分布式基础学习【二】 —— 分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件系统,很大程 ...

  7. Thrift之TProcess类体系原理及源码详细解析

    我的新浪微博:http://weibo.com/freshairbrucewoo. 欢迎大家相互交流,共同提高技术. 之前对Thrift自动生成代码的实现细节做了详细的分析,下面进行处理层的实现做详细 ...

  8. Kafka体系架构详细分解

    我的个人博客排版更舒服: https://www.luozhiyun.com/archives/260 基本概念 Kafka 体系架构 Kafka 体系架构包括若干 Producer.若干 Broke ...

  9. Python-函数式编程-map reduce filter lambda 三元表达式 闭包

    lambda 匿名函数,核心是作为算子,处理逻辑只有一行但具有函数的特性,核心用于函数式编程中 三元运算符 其实本质上是if分支的简化版,满足条件返回 if 前面的值,不满足条件返回 else后面的值 ...

随机推荐

  1. ASP.NET备份还原数据库

    核心技术:using System.Data.SqlClient;using System.IO;string SqlStr1 = "Server=(local);DataBase=mast ...

  2. S1 : 传递参数

    ECMAScript 中所有函数的参数都是按值传递的.也就是说,把函数外部的值复制给函数内部的参数,就和把值从一个变量复制到另一个变量一样.基本类型值的传递如同基本类型变量的复制一样,而引用类型值的传 ...

  3. 迭代输出Map和List<Map<String,Object>>的方法

    一.Map<String,Object> String:key的类型 Object:value的类型,value可能是String,或者int类型,什么类型都可以 对于Map接口来说,本身 ...

  4. FR报表 自动缩小的代码

    procedure TfrMemoView.Draw(Canvas: TCanvas); var newdx: Integer; OldScaleX, OldScaleY: Double; fs: i ...

  5. 【海量视频】2013年上半年BPM厂商'K2'市场活动资料集锦

    3月01日         中广核K2 &SAP流程解决方案分享 活动报道:http://www.k2software.cn/k2events_content/items/k2-sap-346 ...

  6. Visual Studio 中的头文件、源文件和资源文件都是什么?有什么区别??

    头文件:后缀为.h,主要是定义和声明之类的,比如类的定义,常量定义源文件:后缀.cpp,主要是实现之类的,比如类方法的实现资源文件主要是你用到的一些程序代码以外的东西,比如图片之类,或者菜单.工具栏之 ...

  7. Project和Module的介绍

    Project 和 Module 介绍 这两个概念是 IntelliJ IDEA 的必懂知识点之一,请务必要学会. 如果你是 Eclipse 用户,并且已经看了上面给的链接,那 IntelliJ ID ...

  8. HTML5实战教程———开发一个简单漂亮的登录页面

    最近看过几个基于HTML5开发的移动应用,比如臭名昭著的12036移动客户端就是主要使用HTML5来实现的,虽然还是有点反应迟钝,但已经比较流畅了,相信随着智能手机的配置越来越高性能越来越好,会越来越 ...

  9. 项目管理软件---redmine安装配置

    redmine是一个开源的项目管理软件,其主页是:http://www.redmine.org redmine是基于Ruby on Rails框架的,跨平台和跨数据库. 安装过程 ========== ...

  10. 提交自己的插件包(package)

    安装 把下列命令粘贴到终端上: mkdir -p ~/Library/Application\ Support/Developer/Shared/Xcode/Plug-ins; curl -L htt ...