HDU4686 Arc of Dream 矩阵快速幂
Arc of Dream
Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 4246 Accepted Submission(s): 1332
where
a0 = A0
ai = ai-1*AX+AY
b0 = B0
bi = bi-1*BX+BY
What is the value of AoD(N) modulo 1,000,000,007?
Each test case contains 7 nonnegative integers as follows:
N
A0 AX AY
B0 BX BY
N is no more than 1018, and all the other integers are no more than 2×109.
bi = bi-1*BX+BY
a[i]*b[i] = (a[i-1]*Ax+Ay)(b[i-1]*Bx+By)
= Ax*Bx*a[i-1]*b[i-1]+Ay*Bx*b[i-1]+Ax*By*a[i-1]+Ay*By
s
[s[n-1],a[n-2]*b[n-2], b[n-2], a[n-2], 1]
A
[1 ,0 ,0 ,0 ,0]
[Ax*Bx ,Ax*Bx ,0 ,0 ,0]
[Ay*Bx ,Ay*Bx ,Bx ,0 ,0]
[Ax*By ,Ax*By ,0 ,Ax ,0]
[Ay*By ,Ay*By ,By ,Ay ,1]//n-1
s
[s[n], a[n-1]*b[n-1], b[n-1], a[n-1], 1]
#include<bits/stdc++.h>
#define N 5
#define mes(x) memset(x, 0, sizeof(x));
#define ll long long
const ll mod = 1e9+;
const int MAX = 0x7ffffff;
using namespace std;
struct mat {
ll a[N][N];
mat() {
memset(a, , sizeof(a));
}
mat operator * (mat b) {
mat c;
for (int i = ; i < N; i++)
for (int j = ; j < N; j++)
for (int k = ; k < N; k++)
c.a[i][j] = (c.a[i][j] + a[i][k] * b.a[k][j]) % mod;
return c;
}
};
mat f(mat b, ll m) {
mat c;
for (int i = ; i < N; i++)
c.a[i][i] = ;
while (m) {
if (m & )
c = c * b;
b = b * b;
m >>= ;
}
return c;
}
int main()
{
ll n, A0,Ax, Ay, Bx,By,B0;
mat A, s;
while(~scanf("%lld", &n)){
scanf("%lld%lld%lld%lld%lld%lld", &A0, &Ax, &Ay, &B0, &Bx, &By);
if(n == ){
printf("0\n");
continue;
}
mes(A.a);
mes(s.a);
s.a[][] = s.a[][] = (A0%mod*B0%mod)%mod;
s.a[][] = B0%mod;
s.a[][] = A0%mod;
s.a[][] = ;
A.a[][] = ;
A.a[][] = A.a[][] = (Ax%mod*Bx%mod)%mod;A.a[][] = Bx%mod;
A.a[][] = A.a[][] = (Ay%mod*Bx%mod)%mod;A.a[][] = Ax%mod;
A.a[][] = A.a[][] = (Ax%mod*By%mod)%mod;
A.a[][] = A.a[][] = (Ay%mod*By%mod)%mod;
A.a[][] = By;
A.a[][] = Ay;
A.a[][] = ;
A = f(A,n-);
s = s*A;
printf("%lld\n", (mod+s.a[][])%mod);
}
}
HDU4686 Arc of Dream 矩阵快速幂的更多相关文章
- HDU4686——Arc of Dream矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4686 题目大意: 已知a0=A0, ai=Ax*ai-1+Ay; b0=B0, bi=Bx*bi-1 ...
- HDU4686 Arc of Dream —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4686 Arc of Dream Time Limit: 2000/2000 MS (Java/Others) Memo ...
- hdu----(4686)Arc of Dream(矩阵快速幂)
Arc of Dream Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Tota ...
- S - Arc of Dream 矩阵快速幂
An Arc of Dream is a curve defined by following function: where a 0 = A0 a i = a i-1*AX+AY b 0 = B0 ...
- hdu 4686 Arc of Dream(矩阵快速幂)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...
- HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1
http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...
- HDOJ 4686 Arc of Dream 矩阵高速幂
矩阵高速幂: 依据关系够建矩阵 , 高速幂解决. Arc of Dream Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/ ...
- HDU4686 Arc of Dream 矩阵
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU4686 题意概括 a0 = A0 ai = ai-1*AX+AY b0 = B0 bi = bi-1* ...
- hdu 4686 Arc of Dream_矩阵快速幂
题意:略 构造出矩阵就行了 | AX 0 AXBY AXBY 0 | ...
随机推荐
- (三)开关检测来控制LED灯的亮灭
开关检测案例一: 具体电路图如下: K1--K4闭合,控制 D1—D4 亮灭 产生的问题: 1.关于 R8 R9 R7 R10 的阻值选择问题,倘若太大的话, 比如10K 不管开关断开还是闭合,好像 ...
- AHB中split机制简介
完整的AHB协议:1)可以多个master,并且需要外加一个Arbiter,和write multiplexor.为了保证每一时刻只有一个master拥有访问权. 2)为了增强pipeline的能力, ...
- 安装SQLServer2005错误无法在com+目录中安装和配置程序集
无法在com+目录中安装和配置程序集c:\program files\Microsoft SQL Server\90\DTS\tasks\microsoft.sqlserver.MSMQTASK.DL ...
- C语言资源
0.C自带库/函数在线文档 http://www.acm.uiuc.edu/webmonkeys/book/c_guide/ 1.so文件制作和使用 http://blog.csdn.net/love ...
- ubuntu修改文件权限记录
查看文件权限的命令: 在终端输入: ls -l xxx.xxx (xxx.xxx是文件名) 那么就会出现相类似的信息,主要都是这些: -rw-rw-r-- 一共有10位数 其中: 最前面那个 - 代表 ...
- python实现指定目录下批量文件的单词计数:串行版本
直接上代码. 练习目标: 1. 使用 Python 面向对象的方法封装逻辑和表达 : 2. 使用异常处理和日志API : 3. 使用文件目录读写API : 4. 使用 list, map, t ...
- gerrit-git
解释为什么gerrit中的push是需要用refs/for/master http://stackoverflow.com/questions/10461214/why-is-git-push-ger ...
- 161208、Java enum 枚举还可以这么用
在大部分编程语言中,枚举类型都会是一种常用而又必不可少的数据类型,Java中当然也不会例外.然而,Java中的Enum枚举类型却有着许多你意想不到的用法,下面让我们一起来看看. 先来看一段代码示例: ...
- JavaScript 网址
1. javascript 模板引擎 http://aui.github.io/artTemplate/
- java面试每日一题9
题目:判断一个数是否是2的方次幂 public class Power { public static void main(String [] args) throws NumberFormatExc ...