题目链接

参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297

题意:给定n*m的空棋盘

每一次在上面选择一个空的位置放置一枚棋子,直至每一行每一列都至少有一个棋子,求放置次数的期望

分析:

dp[i][j][k] 表示当前用了<=k个chess ,覆盖了i行j列(i*j的格子 每行至少一个,每列至少一个)的概率。

dp[i][j][k] 由 dp[i][j][k-1] , dp[i-1][j][k-1], dp[i][j-1][k-1], dp[i-1][j-1][k-1]得到,分别表示 添加的新的一个chess, 不覆盖新的行列, 只新覆盖一行, 只新覆盖一列, 同时新覆盖一行和一列,得到dp[i][j][k]。
递推时, 每个概率 * (可以覆盖的点数/剩余所有的空点数) 相加得到[i][j][k].

ans += (dp[n][m][i] - dp[n][m][i-1])* i;  (i = [1, n*m])

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define LL __int64
const int maxn = +;
using namespace std;
double d[maxn][maxn][]; int main()
{
double ans;
int t, i, j, k, n, m;
cin>>t;
while(t--)
{
cin>>n>>m;
memset(d, , sizeof(d));
d[][][] = ;
for(i = ; i <= n; i++)
for(j = ; j <= m; j++)
for(k = ; k <= n*m; k++)
{
int sum = n*m-k+;
d[i][j][k] = d[i][j][k-]*((i*j-k+)*1.0/sum*1.0)+ //因为这里还加上了已经覆盖了i行j列的概率,所以dp[i][j][k] 表示当前用了<=k个chess ,覆盖了i行j列(i*j的格子 每行至少一个,每列至少一个)的概率。
d[i-][j][k-]*(j*(n-i+)*1.0/sum*1.0)+
d[i][j-][k-]*(i*(m-j+)*1.0/sum*1.0)+
d[i-][j-][k-]*((n-i+)*(m-j+)*1.0/sum*1.0);
}
ans = ;
for(i = ; i <= n*m; i++)
ans += (d[n][m][i]-d[n][m][i-])*i; //减去表示用i个棋子覆盖的概率。 printf("%.12lf\n", ans);
}
return ;
}

做了后一道概率dp,发现也可以用期望你逆推的方法。

可参照博客:http://blog.csdn.net/smz436487/article/details/40049189

初始化:dp[i][n][m]=0;(0<=i<=n*m)

dp[0][0][0]就是答案。

2维的没办法描述每种状态下的概率

代码:

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
double dp[][][];
int main()
{
int t,n,m;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
memset(dp,,sizeof(dp));
for(int i=n*m-;i>=;i--){
for(int j=n;j>=;j--){
for(int k=m;k>=;k--){
if(j==n&&k==m)continue;
if(j*k<i)continue;
double p1,p2,p3,p4;
p1=1.0*(j*k-i)/(n*m-i);
p2=1.0*(n-j)*k/(n*m-i);
p3=1.0*(m-k)*j/(n*m-i);
p4=1.0*(n-j)*(m-k)/(n*m-i);
dp[i][j][k]=dp[i+][j][k]*p1+dp[i+][j+][k]*p2+dp[i+][j][k+]*p3+dp[i+][j+][k+]*p4+;
}
}
}
printf("%.10lf\n",dp[][][]);
}
return ;
}

zoj 3822 Domination (概率dp 天数期望)的更多相关文章

  1. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  2. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  3. ZOJ 3822 Domination(概率dp 牡丹江现场赛)

    题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...

  4. ZOJ 3822 Domination(概率dp)

    一个n行m列的棋盘,每天可以放一个棋子,问要使得棋盘的每行每列都至少有一个棋子 需要的放棋子天数的期望. dp[i][j][k]表示用了k天棋子共能占领棋盘的i行j列的概率. 他的放置策略是,每放一次 ...

  5. zoj 3822(概率dp)

    ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Ju ...

  6. poj 2096 Collecting Bugs (概率dp 天数期望)

    题目链接 题意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcom ...

  7. zoj 3822 Domination (可能性DP)

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  8. ZOJ - 3822 Domination (DP)

    Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess ...

  9. zoj 3822 Domination(dp)

    题目链接:zoj 3822 Domination 题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望. 解题思路:大白书上概率那一张有一 ...

随机推荐

  1. IOS Crash捕获

    IOS Crash ,就两种情况:一种是异常,另一种是中断[信号量]. #include <libkern/OSAtomic.h> #include <execinfo.h> ...

  2. URL编码方法比较

    javascript中存在几种对URL字符串进行编码的方法:escape(),encodeURI(),以及encodeURIComponent().这几种编码所起的作用各不相同. escape() 方 ...

  3. ZendStudio导入一个已有的网站

    解决方法:新建'PHP Project',选择'Create project at existiong location(from existing source)',路径指向你的网站根目录.

  4. hadoop安装问题

    1. 运行start-dfs.sh启动HDFS守护进程,start-yarn.sh面向YARN的资源器和节点管理器,资源管理器web地址是http://localhost:8080/.输入stop.d ...

  5. FIN_WAIT1 能持续多久?你知道吗

    FIN_WAIT1 能持续多久?你知道吗 2016-01-12 运维帮 原文:http://blogread.cn/it/article/7215?f=wb&luicode=10000359 ...

  6. 各大公司广泛使用的在线学习算法FTRL详解 - EE_NovRain

    转载请注明本文链接:http://www.cnblogs.com/EE-NovRain/p/3810737.html 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression ...

  7. GCD的简单封装

    扩展: dispatch_block_t :无参数block,使用起来很简单 下载链接:http://pan.baidu.com/s/1bndN6Yb    ]; }     //定时器 - (voi ...

  8. D&F学数据结构系列——二叉排序树

    二叉排序树(Binary Sort Tree) 定义:对于树中的每个结点X,它的左子树中所有关键字值小于X的关键字值,而它的右子树中所有关键字值大于X的关键字值. 二叉查找树声明: #ifndef _ ...

  9. C# virtual和override

    本文转载来自于:http://bollaxu.iteye.com/blog/1662855 在函数的声明中,当有“virtual”修饰的时候,和没有virtual有什么区别呢?最重要的一点就是调用实例 ...

  10. Spring学习总结(0)——Spring详解

    一:spring的基本用法: 1,关于spring容器: spring容器是Spring的核心,该 容器负责管理spring中的java组件, ApplicationContext ctx  = ne ...