最大后验估计(MAP)
最大后验估计是根据经验数据获得对难以观察的量的点估计。与最大似然估计类似,但是最大的不同时,最大后验估计的融入了要估计量的先验分布在其中。故最大后验估计可以看做规则化的最大似然估计。
首先,我们回顾上篇文章中的最大似然估计,假设x为独立同分布的采样,θ为模型参数,f为我们所使用的模型。那么最大似然估计可以表示为:

现在,假设θ的先验分布为g。通过贝叶斯理论,对于θ的后验分布如下式所示:

最后验分布的目标为:

注:最大后验估计可以看做贝叶斯估计的一种特定形式。
举例来说:
假设有五个袋子,各袋中都有无限量的饼干(樱桃口味或柠檬口味),已知五个袋子中两种口味的比例分别是
樱桃 100%
樱桃 75% + 柠檬 25%
樱桃 50% + 柠檬 50%
樱桃 25% + 柠檬 75%
柠檬 100%
如果只有如上所述条件,那问从同一个袋子中连续拿到2个柠檬饼干,那么这个袋子最有可能是上述五个的哪一个?
我们首先采用最大似然估计来解这个问题,写出似然函数。假设从袋子中能拿出柠檬饼干的概率为p(我们通过这个概率p来确定是从哪个袋子中拿出来的),则似然函数可以写作

由于p的取值是一个离散值,即上面描述中的0,25%,50%,75%,1。我们只需要评估一下这五个值哪个值使得似然函数最大即可,得到为袋子5。这里便是最大似然估计的结果。
上述最大似然估计有一个问题,就是没有考虑到模型本身的概率分布,下面我们扩展这个饼干的问题。
假设拿到袋子1或5的机率都是0.1,拿到2或4的机率都是0.2,拿到3的机率是0.4,那同样上述问题的答案呢?这个时候就变MAP了。我们根据公式

写出我们的MAP函数。

根据题意的描述可知,p的取值分别为0,25%,50%,75%,1,g的取值分别为0.1,0.2,0.4,0.2,0.1.分别计算出MAP函数的结果为:0,0.0125,0.125,0.28125,0.1.由上可知,通过MAP估计可得结果是从第四个袋子中取得的最高。
上述都是离散的变量,那么连续的变量呢?假设
为独立同分布的
,μ有一个先验的概率分布为
。那么我们想根据
来找到μ的最大后验概率。根据前面的描述,写出MAP函数为:

此时我们在两边取对数可知。所求上式的最大值可以等同于求

的最小值。求导可得所求的μ为

以上便是对于连续变量的MAP求解的过程。
在MAP中我们应注意的是:
MAP与MLE最大区别是MAP中加入了模型参数本身的概率分布,或者说。MLE中认为模型参数本身的概率的是均匀的,即该概率为一个固定值。
因此如果模型的均值随着样本个数的改变而发生一定变化,并且服从高斯分布则可以考虑添加后验概率估计。
参考:
http://www.cnblogs.com/liliu/archive/2010/11/24/1886110.html
http://www.cnblogs.com/washa/p/3222109.html
最大后验估计(MAP)的更多相关文章
- 贝叶斯公式与最大后验估计(MAP)
1, 频率派思想 频率派思想认为概率乃事情发生的频率,概率是一固定常量,是固定不变的 2, 最大似然估计 假设有100个水果由苹果和梨混在一起,具体分配比例未知,于是你去随机抽取10次,抽到苹果标记为 ...
- 【SR】MAP
MAP:最大后验概率(Maximum a posteriori) 估计方法根据经验数据获得对难以观察的量的点估计.它与最大似然估计中的 Fisher方法有密切关系, 但是它使用了一个增大的优化目标,这 ...
- 高斯混合模型(GMM)
复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函 ...
- PRML读书后记(一): 拟合学习
高斯分布·拟合 1.1 优美的高斯分布 中心极限定理[P79]证明均匀分布和二项分布在数据量 $N\rightarrow \infty$ 时,都会演化近似为高斯分布. 作为最晚发现的概率分布,可以假设 ...
- over-fitting、under-fitting 与 regularization
机器学习中一个重要的话题便是模型的泛化能力,泛化能力强的模型才是好模型,对于训练好的模型,若在训练集表现差,不必说在测试集表现同样会很差,这可能是欠拟合导致:若模型在训练集表现非常好,却在测试集上差强 ...
- EM阅读资料
1,从最大似然到EM算法浅解 2,(EM算法)The EM Algorithm 3,数据挖掘十大算法----EM算法(最大期望算法) (番外)最大后验估计(MAP)
- Chapter 7:Statistical-Model-Based Methods
作者:桂. 时间:2017-05-25 10:14:21 主要是<Speech enhancement: theory and practice>的读书笔记,全部内容可以点击这里. 书中 ...
- Variational Bayes
一.前言 变分贝叶斯方法最早由Matthew J.Beal在他的博士论文<Variational Algorithms for Approximate Bayesian Inference> ...
- [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes+prior
先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...
随机推荐
- poj1005 I Think I Need a Houseboat
这题目只要读懂了意思就好做了,先求出来(0.0)到(x.y)的距离为r,然后求出来以r为半径的半圆的面积,然后再用这个面积除以50,再向上取整就可以啦. #include <stdio.h> ...
- ubuntu下使用apt-get install安装的软件在哪个目录
形如 apt-get install apps 这样的命令,一般会将下载文件放在 /var/cache/apt/archives目录下,然后安装. 如果不及时清理,这个目录所占空间会越来越大,幸运的是 ...
- 关于javascript 里面类型的判断
javacript至今共有7中类型 Six data types that are primitives: Boolean Null Undefined Number String Symbol (n ...
- 利用curl抓取远程页面内容
最基本的操作如下 $curlPost = 'a=1&b=2';//模拟POST数据$cookie_file = tempnam('./temp','kie');//可选,保存ses ...
- FileUpload无法赋值解决方案
FileUpload无法赋值解决方案 编写人:CC阿爸 2015-1-27 今天在这里,我想与大家一起分享如何处理fileupload控件不能赋值的问题.有兴趣的同学,可以一同探讨与学习一下,否则就略 ...
- HTML5 对于手机页面长按会粘贴复制的禁用 (解决方案)
解决方案: 直接在CSS 文件中添加下面的代码,就可以实现了在手机端禁止粘贴复制的功能: *{ -webkit-touch-callout:none; /*系统默认菜单被禁用*/ -we ...
- Ubuntu通过APT配置开发环境
apt-get install vim apt-get install ssh apt-get install apache2 apt-get install redis-server apt-get ...
- 重拾C,一天一点点_8
这两天发现一个问题,我最近发的几篇博文稀里糊涂地被转到别的网站去了,目前发现有两个网站转载了,一个注明了作者出处(博客园 lltong),但没给任何链接.另一个网站呢,就是直接抓的,而且还抓的乱七八糟 ...
- php实现显示网站运行时间-秒转换年月日时分秒
<?php // 设置时区 date_default_timezone_set('Asia/Shanghai'); /** * 秒转时间,格式 年 月 日 时 分 秒 * * @author w ...
- PHP系统函数
(一)字符串处理函数 Chr函数 作用:根据ASCII码返回相应的字符. 语法:string chr(int ascii): Chop函数 作用:去除字符串中连续空格和空白行. 语法:string c ...