POJ 3565 Ants (最小权匹配)
题意
给出一些蚂蚁的点,给出一些树的点,两两对应,使他们的连线不相交,输出一种方案。
思路
一开始没想到怎么用最小权匹配……后来发现是因为最小权匹配的方案一定不相交(三角形两边之和大于第三边)……还是too young too simple……没有融会贯通……
代码
[cpp]
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <algorithm>
#include <string>
#include <cstring>
#define MID(x,y) ((x+y)/2)
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i, begin, m) for (int i = begin; i < begin+m; i ++)
using namespace std;
const int MAXV = 205; //X or Y点集大小
const int oo = 0x3fffffff;
const double eps = 1e-8;
template <class weight_type>
struct MaximalMatchingOfWeightedBipartiteGraph{
weight_type w[MAXV][MAXV]; //权值
int sv, tv; //Perfect Matching, sv should equal to tv
bool S[MAXV], T[MAXV];
weight_type lx[MAXV], ly[MAXV]; //X、Y点集可行顶标
int left[MAXV];
weight_type slack[MAXV];
void init(int v){
sv = tv = v;
MEM(w, 0);
}
void add_uedge(int u, int v, weight_type _w){
w[u][v] = _w;
}
bool cross_path(int u){
S[u] = true;
for (int v = 1; v <= tv; v ++){
if(T[v]) continue;
weight_type t = lx[u] + ly[v] - w[u][v];
if (t < eps){
T[v] = true;
if (left[v] == 0 || cross_path(left[v])){
left[v] = u;
return true;
}
}
else{
slack[v] = min(slack[v], t);
}
}
return false;
}
weight_type solve(){
//Init
MEM(left, 0);
for (int i = 1; i <= sv; i ++){
lx[i] = 0;
ly[i] = 0;
for (int j = 1; j <= tv; j ++)
lx[i] = max(lx[i], w[i][j]);
}
//Main
for (int i = 1; i <= sv; i ++){
for (int j = 1; j <= tv; j ++) slack[j] = oo;
while(1){
MEM(S, false); MEM(T, false);
if (cross_path(i)){
break;
}
else{
weight_type d = oo;
for (int j = 1; j <= tv; j ++)
if (!T[j]) d = min(d, slack[j]);
for (int j = 1; j <= sv; j ++)
if (S[j]) lx[j] -= d;
for (int j = 1; j <= tv; j ++){
if (T[j]) ly[j] += d;
else slack[j] -= d;
//匈牙利树中T集点ly不变,S集点lx减小,更新slack值
}
}
}
}
weight_type res = 0;
for(int i = 1; i <= sv; i ++) res += lx[i];
for(int i = 1; i <= tv; i ++) res += ly[i];
return res;
}
};
MaximalMatchingOfWeightedBipartiteGraph <double> km;
struct Point{
double x, y;
}p[MAXV];
double dist(int i, int j){
return sqrt((p[i].x - p[j].x)*(p[i].x - p[j].x) + (p[i].y - p[j].y)*(p[i].y - p[j].y));
}
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
int n;
while(scanf("%d", &n) != EOF){
REP(i, 1, n){
scanf("%lf %lf", &p[i+n].x, &p[i+n].y);
}
REP(i, 1, n){
scanf("%lf %lf", &p[i].x, &p[i].y);
}
km.init(n);
REP(i, 1, n){
REP(j, 1, n){
km.add_uedge(i, j, -dist(i, j+n));
}
}
//printf("%f\n", -km.solve());
km.solve();
REP(i, 1, n){
printf("%d\n", km.left[i]);
}
}
return 0;
}
[/cpp]
POJ 3565 Ants (最小权匹配)的更多相关文章
- Poj(3686),最小权匹配,多重匹配,KM
题目链接 The Windy's | Time Limit: 5000MS | Memory Limit: 65536K | | Total Submissions: 4939 | Accepted: ...
- POJ 3565 Ants 【最小权值匹配应用】
传送门:http://poj.org/problem?id=3565 Ants Time Limit: 5000MS Memory Limit: 65536K Total Submissions: ...
- poj 2516(拆点+最小权匹配)
题目链接:http://poj.org/problem?id=2516 思路:考虑某种货物,由于某个订货商可能接受来自不同地区的货物,而某一地区的货物也可能送给不同的订货商,显然不能直接进行匹配,必须 ...
- poj 3686(拆点+最小权匹配)
题目链接:http://poj.org/problem?id=3686 思路:显然工件为X集,机器为Y集合.由于每个机器一次只能加工一个部件,因此我们可以将一台机器拆成N个点,至于部件与机器之间连多大 ...
- poj 2195(KM求最小权匹配)
题目链接:http://poj.org/problem?id=2195 思路:我们都知道KM使用来求最大权匹配的,但如果要求最小权匹配,只需把图中的权值改为负值,求一次KM,然后权值和取反即可. ht ...
- 【POJ 2400】 Supervisor, Supervisee(KM求最小权匹配)
[POJ 2400] Supervisor, Supervisee(KM求最小权匹配) Supervisor, Supervisee Time Limit: 1000MS Memory Limit ...
- 【POJ 2195】 Going Home(KM算法求最小权匹配)
[POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submiss ...
- POJ 2400 最小权匹配
吐槽:首先,这道题的输入居然是错的.要将上下两个矩阵的位置换一下才可以出样例,也就是上面那个矩阵是employee对Supervisor的打分,下面那个矩阵才是Supervisor对employee的 ...
- HDU(1853),最小权匹配,KM
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 Cyclic Tour Time Limit: 1000/1000 MS (Java/Other ...
随机推荐
- 历代诗词咏宁夏注释3----蔡升元:<题大清渠>
题大清渠 蔡升元 为怜□□□□□,□□□□□□□. □□□□沙碛里,凿开峡口贺兰旁. 支分九堡通沟浍,鼎峙三渠并汉唐. 作吏尽如君任事,不难到处乐丰穰. 两渠中划大清渠,畚筑无劳民力纾.[1] 心画万 ...
- mvc5 错误页如何定义
项目根目录下的Web.config <system.web> <customErrors mode="On" defaultRedirect="~/Er ...
- poj 2311 Cutting Game 博弈论
思路:求SG函数!! 代码如下: #include<iostream> #include<cstdio> #include<cmath> #include<c ...
- C Primer Plus之位操作
二进制补码表示法 几乎所有的计算机都使用二进制补码表示法来存储位于n位存储单元中的有符号整数. 在二进制补码表示法中,最左位决定符号.如果它是0,该整数为正(即非负):如果是1,该整数为负 ...
- MyEclipse — Maven+Spring+Struts+Hibernate 整合 [学习笔记-5]
测试项目 目录结构
- java web线程池
线程池 要知道在计算机中任何资源的创建,包括线程,都需要消耗系统资源的.在WEB服务中,对于web服 务器的响应速度必须要尽可能的快,这就容不得每次在用户提交请求按钮后,再创建线程提供服务 .为了减少 ...
- JAVA数据库连接池实现(转)
连接池的管理用了了享元模式,这里对连接池进行简单设计. 一.设计思路 1.连接池配置属性DBbean:里面存放可以配置的一些属性 2.连接池接口IConnectionPool:里面定义一些基本的获取连 ...
- iOS 开发--添加工程
文/Bison(简书作者)原文链接:http://www.jianshu.com/p/dd71e15df5d0著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 第一部分,配置项目 在此只 ...
- React架构、设计思想
一.
- Java-马士兵设计模式学习笔记-代理模式-动态代理 修改成可以任意修改代理逻辑
一.概述 1.目标:动态代理的代理逻辑可以任意修改 2.思路: (1)要把代理逻辑抽离,站在jvm的角度思考,应独立出InvocationHandler接口,并接收被代理的对象及方法作为参数invok ...