现在中心用的是NEB试剂盒,建库步骤更简单一些。TruSeq和NEB差不多,既可以建DNA又可以建RNA。

TruSeq Technology

 
 

TruSeq technology represents the latest advancements to Illumina sequencing, aimed at optimizing data accuracy, research scalability, and the user experience. Illumina sequencing systems deliver the most accurate data across a broad range of applications. TruSeq technology drives the Illumina sequencing workflow, from sample/library preparation to sequencing and data analysis.

A typical sequencing workflow comprises sample/library preparation, cluster amplification, DNA sequencing, image analysis/base calling, read alignment, and variant discovery. If any of these steps generate poor results, the quality of the final data set is compromised. With TruSeq technology, each step in this process is optimized to deliver the most accurate data to ensure the highest standard of quality for any research project.

The Illumina Sequencing Experiment Workflow


 
 

Platform Accuracy

Platform accuracy describes the overall accuracy of the sequencing workflow, accounting for each step of the process, from sample preparation through variant discovery. It ultimately determines the reliability of a sequencing experiment. The sequencing workflow can be segmented into three main stages that each provide a unique accuracy contribution: Sample Accuracy, Detection Accuracy, and Algorithm Accuracy.

Sample Accuracy

Sample accuracy is associated with the sample/library preparation stage of the sequencing workflow. In this stage, DNA is fragmented in preparation for library construction.

Each fragment in the library will eventually correspond to a sequencing read, so high fragment size uniformity and library diversity is important for achieving even coverage across the genome. Errors that occur during sample preparation, such as missing fragments due to a non-diverse library, cannot be identified by the sequencer.

The portions of the genome not represented in the library will not be sequenced, leading to gaps in the data set. These gaps cannot be corrected for by error correction methods employed by some sequencing technologies.

Hence, quality scores do not reflect errors introduced during sample preparation, as the sequencing signal will appear clean and error-free. The maximal achievable accuracy of most sequencing platforms is limited by the sample accuracy.

Detection Accuracy

Detection accuracy accounts for the second stage of the sequencing workflow, comprising cluster generation, DNA sequencing, and primary data analysis. Any errors that occur during this stage typically leave a signature on the detected signal and are, therefore, reflected in the quality scores.

Quoted error rates for sequencing systems are usually dominated by detection accuracy.

Detection errors are less harmful than sample errors because they can be tracked using the well-established per-base quality scores. Conversely, sample errors cannot be tracked directly, but manifest themselves by lowering the overall system accuracy.

Detection errors can be improved by single-read error correction, multiple interrogation (re-sequencing), or encoding schemes.

Algorithm Accuracy

Algorithm accuracy pertains to secondary data analysis phase of the workflow, typically involving alignment and variant calling. The accuracy of the alignment method is critical.

Regardless of how high the quality of data is from the sequencing instrument, sub-optimal alignment will lead to a poor final data set, potentially with incorrectly placed mismatches, non-uniform coverage, and a high number of gaps.

In turn, this can lead to high false positive and false negative rates. The variant calling method, by itself, also needs to be highly accurate for the same reasons.

TruSeq technology ensures that overall system accuracy is consistently maintained at a very high level throughout the sequencing workflow.

TruSeq Products

Visit our product list page to find TruSeq products.

TruSeq 应该指的是试剂盒名字 NEB的更多相关文章

  1. [程序设计语言]-[核心概念]-02:名字、作用域和约束(Bindings)

    本系列导航 本系列其他文章目录请戳这里. 1.名字.约束时间(Binding Time) 在本篇博文开始前先介绍两个约定:第一个是“对象”,除非在介绍面向对象语言时,本系列中出现的对象均是指任何可以有 ...

  2. Windows 网络编程

    网络编程 API ,失败返回 -,错误代码 WSASYSNOTREADY 表示基础网络子系统没有准备好网络通行,WSAVERNOTSUPPORTED 表示 Socket 版本不支持,WSAEINPRO ...

  3. 浅谈Hibernate入门

    前言 最近打算做一个自己的个人网站,经过仔细思考,打算使用hibernate作为开发的ORM框架,因此各种找资料,由于本人是刚刚接触这技术的,所以就找了比较基础的知识来分享下 基本概述 Hiberna ...

  4. UDS(ISO14229-2006) 汉译(No.6 应用层服务)

    6.1总览 应用层服务通常被当作诊断服务.应用层服务用于在基于客户端-服务器的系统(Client-Server base System)中执行一些功能,例如针对车载服务器(ECU)的检测.检查.监控和 ...

  5. AIX 5L 系统管理技术 —— 存储管理——卷组

    卷组 在安装系统时,就会创建一个rootvg卷组.包含自带硬盘(内置硬盘)和系统逻辑卷,一个系统只能有一个rootvg卷组.一般情况下rootvg卷组最好只包含自带硬盘. 一.创建卷组 在创建卷组之前 ...

  6. gulp 安装 使用 和删除

    1.安装 全局安装: npm intstall gulp -g      (首先你得有node.js ,这个可以去node 官网下载个iso的镜像安装包,傻瓜式安装.自带npm) 安装在项目中: 首先 ...

  7. db2命令

    把远程的数据库信息加载到本地 第一步,catalog server端的node ,命令如下: db2 catalog tcpip node db2node remote hostname server ...

  8. XMPP 和 OpenFire

    XMPP XMPP(可扩展消息处理现场协议)是基于可扩展标记语言(XML)的协议,它用于即时消息(IM)以及在线现场探测.是一种数据传输协议. XMPP的前身是Jabber,一个开源形式组织产生的网络 ...

  9. Linux 查找文件

    find 查找目录 -name "文件名"find / -name "php.ini"locate 文件名locate php.ini 一:locate命令 l ...

随机推荐

  1. 重点关注之自定义序列化方式(Protobuf和Msgpack)

    除了默认的JSON和XML序列化器外,如果想使用其它格式的(比如二进制)序列化器,也是可以的.比如著名的Protobuf和Msgpack,它们都是二进制的序列化器,特点是速度快,体积小.使用方法如下. ...

  2. C#拉姆达(=>)表达式

    前言: 之前小猪曾经分享过自己对C#委托的一点理解 其实在使用委托的过程中我们会大量的使用拉姆达(=>)表达式 介绍: "Lambda表达式"是一个匿名函数,是一种高效的类似 ...

  3. windows下mysql主从同步备份步骤

    目的:有两台MySQL数据库服务器A和B,使A为主服务器,B为从服务器,初始状态时,A和B中的数据信息相同,当A中的数据发生变化时,B也跟着发生相应的变化,使得A和B的数据信息同步,达到备份的目的. ...

  4. HBase vs. BigTable Comparison - HBase对比BigTable

    HBase vs. BigTable Comparison HBase is an open-source implementation of the Google BigTable architec ...

  5. P264练习题1.2题

    package 集合; import java.util.*; public class fourteen { public static void main(String[] args) { //1 ...

  6. hdu 4606 Occupy Cities

    http://acm.hdu.edu.cn/showproblem.php?pid=4606 两点之间如果有线段相隔的话,他们的最短路就需要经过线段的端点 把所有线段的端点也加入点数组中,求任意两个点 ...

  7. 戴文的Linux内核专题:04安全

    转自Linux中国 Linux内核是所有Linux系统的核心.如果有任何恶意代码控制或破害了内核的任何一部分,那么系统会严重受损,文件可能被删除或损坏,私人信息可能被盗等等.很明显,保持内核安全涉及到 ...

  8. iOS9/iOS8界面对比 XCode7

    Xcde7 bate 无需开发这账号(99¥)可以调试程序 目前是测试版 iOS9/iOS8界面对比 (注:左边为iOS8界面,右边为iOS9界面.) 1.新字体 苹果在 iOS9 中使用旧金山字体取 ...

  9. 推荐可以代替Visio的HTML开发的作图工具:ProcessOn

    过去作图的时候一直都是在用visio,每一次换了电脑使用都要重新安装,这大家都知道,最头疼的就是激活问题,曾经因为激活问题我“找遍了”正个互联网,最后还没找到...从08年开始到现在,visio用了这 ...

  10. equals() 与 hashcode() 的区别与联系

    两者都是从Object类继承的方法,Object中equals方法比较的是this和参数传进来的对象的引用地址是否相同,这样的话,equals返回值为true的必要充分条件就是两者指向同一个对象,那么 ...