ZOJ 3597

题意是说有n把枪,有m个靶子,每把枪只有一发子弹(也就是说一把枪最多只能打一个靶子), 告诉你第 i 把枪可以打到第j个靶, 现在等概率的出现一个连续的P把枪,在知道这P把枪之后,你被允许选择一个连续的Q个靶子,使得这P把枪所打到的靶子的数目最多,问打到的靶子数目的期望值是多少。

这题通过简单的转化就可以转换成为另一个模型:

如果第a把枪可以打到第b个靶子,那么将其视为二位平面上的一个点(b, a), 问题转化为一个Q * P的矩形最多可以覆盖多少个点。只是有一点需要注意的就是同一把枪只能打到一个靶子,所以在a相等的情况下最多只能覆盖一个b。

至于如何求矩形覆盖点的个数,我这也是第一次写,所以查阅了有关资料。

方法是将矩形的右界作为参考点,找出参考点在哪一个区间(线段)内矩形都可以覆盖到这个点,这样每一个点就对应y相等的一段线段,原题就转化成为了高度y小于P的区间内某一个位置x上的覆盖次数的最大值,可以用线段树的离线操作(扫描线)来完成。

 #include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define inf (-((LL)1<<40))
#define lson k<<1, L, (L + R)>>1
#define rson k<<1|1, ((L + R)>>1) + 1, R
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)
#define rep(i, a, b) for(int i = a; i <= b; i ++) template<class T> T CMP_MIN(T a, T b) { return a < b; }
template<class T> T CMP_MAX(T a, T b) { return a > b; }
template<class T> T MAX(T a, T b) { return a > b ? a : b; }
template<class T> T MIN(T a, T b) { return a < b ? a : b; }
template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; }
template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } //typedef __int64 LL;
typedef long long LL;
const int MAXN = ;
const int MAXM = ;
const double eps = 1e-;
//LL MOD = 987654321; #define OK(i) (i > 0 && p[i - 1].y == p[i].y && p[i].x <= p[i - 1].x + Q - 1) int T, N, M, P, Q, K;
struct Point {
int x, y;
bool operator < (const Point &A) const {
return y == A.y ? x < A.x : y < A.y;
}
}p[MAXM]; struct SegTree {
LL ma[MAXN<<], add[MAXN<<]; void build(int k, int L, int R) {
ma[k] = add[k] = ;
if(L == R) return ;
build(lson); build(rson);
} void pushDown(int k) {
ma[k<<] += add[k]; add[k<<] += add[k];
ma[k<<|] += add[k]; add[k<<|] += add[k];
add[k] = ;
} void update(int k, int L, int R, int l, int r, int val) {
if(R < l || L > r) return ;
if(l <= L && R <= r) { ma[k] += val; add[k] += val; return ; }
pushDown(k);
update(lson, l, r, val);
update(rson, l, r, val);
ma[k] = max(ma[k<<], ma[k<<|]);
} LL query(int k, int L, int R, int l, int r) {
if(R < l || L > r) return ;
if(l <= L && R <= r) return ma[k];
pushDown(k);
return max(query(lson, l, r), query(rson, l, r));
} }segTree; int main()
{
//FIN;
while(~scanf("%d", &T)) while(T--)
{
scanf("%d %d %d %d %d", &N, &M, &P, &Q, &K);
rep (i, , K - ) scanf("%d %d", &p[i].y, &p[i].x);
sort(p, p + K); segTree.build(, , M);
LL ans = , fr = , re = ;
rep (i, P, N) {
while(fr < K && p[fr].y <= i) {
int st = OK(fr) ? p[fr-].x + Q : p[fr].x;
int ed = min(p[fr].x + Q - , M);
segTree.update(, , M, st, ed, );
fr ++;
}
while(i - p[re].y >= P) {
int st = OK(re) ? p[re-].x + Q : p[re].x;
int ed = min(p[re].x + Q - , M);
segTree.update(, , M, st, ed, -);
re ++;
}
ans += segTree.query(, , M, , M);
}
printf("%.2lf\n", (double)ans / (N - P + ));
}
return ;
}

ZOJ 3597 Hit the Target! (线段树扫描线 -- 矩形所能覆盖的最多的点数)的更多相关文章

  1. hdu 1828 Picture(线段树扫描线矩形周长并)

    线段树扫描线矩形周长并 #include <iostream> #include <cstdio> #include <algorithm> #include &l ...

  2. HDU 1264 Counting Squares (线段树-扫描线-矩形面积并)

    版权声明:欢迎关注我的博客.本文为博主[炒饭君]原创文章,未经博主同意不得转载 https://blog.csdn.net/a1061747415/article/details/25471349 P ...

  3. hdu1828 Picture(线段树+扫描线+矩形周长)

    看这篇博客前可以看一下扫描线求面积:线段树扫描线(一.Atlantis HDU - 1542(覆盖面积) 二.覆盖的面积 HDU - 1255(重叠两次的面积))  解法一·:两次扫描线 如图我们可以 ...

  4. poj 3277 City Horizon (线段树 扫描线 矩形面积并)

    题目链接 题意: 给一些矩形,给出长和高,其中长是用区间的形式给出的,有些区间有重叠,最后求所有矩形的面积. 分析: 给的区间的范围很大,所以需要离散化,还需要把y坐标去重,不过我试了一下不去重 也不 ...

  5. ZOJ-3597-Hit the Target!(线段树+扫描线)

    题解引自:http://www.cnblogs.com/wuyiqi/archive/2012/04/28/2474614.html 这题和着题解一块看,看了半天才看懂的....菜菜.... 题意:有 ...

  6. 【学习笔记】线段树—扫描线补充 (IC_QQQ)

    [学习笔记]线段树-扫描线补充 (IC_QQQ) (感谢 \(IC\)_\(QQQ\) 大佬授以本内容的著作权.此人超然于世外,仅有 \(Luogu\) 账号 尚可膜拜) [学习笔记]线段树详解(全) ...

  7. 线段树扫描线(一、Atlantis HDU - 1542(覆盖面积) 二、覆盖的面积 HDU - 1255(重叠两次的面积))

    扫描线求周长: hdu1828 Picture(线段树+扫描线+矩形周长) 参考链接:https://blog.csdn.net/konghhhhh/java/article/details/7823 ...

  8. hdu1542 Atlantis (线段树+扫描线+离散化)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. 【Codeforces720D】Slalom 线段树 + 扫描线 (优化DP)

    D. Slalom time limit per test:2 seconds memory limit per test:256 megabytes input:standard input out ...

随机推荐

  1. 在asp.net前台页面中引入命名空间 和连接数据库

    例如:<%@ Import Namespace="System.Data" %> 连接数据库 <% string strconn = "Data Sou ...

  2. 四、Emmet:快速编写HTML,CSS代码的有力工具

    介绍 Emmet是一个插件,在IDE中安装该插件后即可使用该功能. HTML代码写起来虽简单,但是重复代码很多,Emmet能够存在一种HTML代码简写法(比较类似CSS的选择器写法),比如 div.c ...

  3. 学会简单使用poi进行excel有关操作

    直接上代码: 官网上的抄的api例子: package com.test; import java.io.File; import java.io.FileInputStream; import ja ...

  4. 信息熵 Information Theory

    信息论(Information Theory)是概率论与数理统计的一个分枝.用于信息处理.信息熵.通信系统.数据传输.率失真理论.密码学.信噪比.数据压缩和相关课题.本文主要罗列一些基于熵的概念及其意 ...

  5. ssh-keygen的用法

    一.概述 1.就是为了让两个linux机器之间使用ssh不需要用户名和密码.采用了数字签名RSA或者DSA来完成这个操作 2.模型分析 假设 A (192.168.20.59)为客户机器,B(192. ...

  6. 简单的聊天程序,主要用到的是Socket

    服务端: import java.io.*; import java.net.*; import java.util.*; public class ChatServer { boolean stat ...

  7. mysql 插入汉字出现问号 解决方法

    mysql中文显示乱码或者问号是因为选用的编码不对或者编码不一致造成的,最简单的方法就是修改mysql的配置文件my.cnf.在[mydqld]和[client]段加入 default-charact ...

  8. Bootstrap学习之路(3)---列表组件

    列表是几乎所有网站都会用到的一个组件,正好bootstrap也给我们提供了这个组件的样式,下面我给大家简单介绍一下bootstrap中的列表组件的用法! 首先,重提一下引用bootstrap的核心文件 ...

  9. 读取raw目录中的文件数据

    try { InputStream is2 = getResources().openRawResource(R.raw.info); InputStreamReader isr2 = new Inp ...

  10. HDU5828 Rikka with Sequence 线段树

    分析:这个题和bc round 73应该是差不多的题,当时是zimpha巨出的,那个是取phi,这个是开根 吐槽:赛场上写的时候直接维护数值相同的区间,然后1A,结果赛后糖教一组数据给hack了,仰慕 ...