Codeforces Round #131 (Div. 1) B. Numbers dp
题目链接:
http://codeforces.com/problemset/problem/213/B
B. Numbers
time limit per test 2 secondsmemory limit per test 256 megabytes
#### 问题描述
> Furik loves writing all sorts of problems, especially such that he can't solve himself. You've got one of his problems, the one Furik gave to Rubik. And Rubik asks you to solve it.
>
> There is integer n and array a, consisting of ten integers, indexed by numbers from 0 to 9. Your task is to count the number of positive integers with the following properties:
>
> the number's length does not exceed n;
> the number doesn't have leading zeroes;
> digit i (0 ≤ i ≤ 9) occurs in the number at least a[i] times.
#### 输入
> The first line contains integer n (1 ≤ n ≤ 100). The next line contains 10 integers a[0], a[1], ..., a[9] (0 ≤ a[i] ≤ 100) — elements of array a. The numbers are separated by spaces.
#### 输出
> On a single line print the remainder of dividing the answer to the problem by 1000000007 (109 + 7).
#### 样例
> **sample input**
> 3
> 1 1 0 0 0 0 0 0 0 0
>
> **sample output**
> 36
note
numbers 10, 110, 210, 120, 103 meet the requirements. There are other suitable numbers, 36 in total.
题意
给你0到9这十个数字,第i个数至少要用a[i]次,问能拼成的长度小于等于n的正整数(不能有前导零)
题解
dp[i][len]表示利用i到9的数字能拼成的长度为len的所有可能数。
状态转移方程:dp[i][len]=sigma(dp[i+1][len-k]*C[len][k])。
相当于是在用i+1到9凑成的长度为len-k的数字串里面塞进去k个i的所有可能数。用乘法原理可知去掉已经统计出来的len-k,我们要处理的就是从len里面选k个位置来放i。
注意:由于前导零不用考虑,而且只要统计正整数,所以我们在放0的时候,是不能让零放在第一位的,对于0我们可以特殊处理一下。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef __int64 LL;
const int maxn = 111;
const int mod = 1e9 + 7;
int dig[22],n;
LL dp[22][maxn];
LL C[maxn][maxn];
void pre() {
memset(C, 0, sizeof(C));
C[0][0] = 1;
for (int i = 1; i < maxn; i++) {
C[i][0] = 1;
for (int j = 1; j <= i; j++) {
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
C[i][j] %= mod;
}
}
}
int main() {
pre();
scanf("%d", &n);
for (int i = 0; i < 10; i++) {
scanf("%d", &dig[i]);
}
memset(dp, 0, sizeof(dp));
dp[10][0] = 1;
for (int i = 9; i > 0; i--) {
for (int j = 0; j < maxn; j++) {
for (int k = dig[i]; k <=j; k++) {
dp[i][j] += dp[i + 1][j - k] * C[j][k];
dp[i][j] %= mod;
}
}
}
for (int j = 0; j < maxn; j++) {
for (int k = dig[0]; k < j; k++) {
dp[0][j] += dp[1][j - k] * C[j - 1][k];
dp[0][j] %= mod;
}
}
LL ans = 0;
for (int j = 1; j <= n; j++) {
ans += dp[0][j];
ans %= mod;
}
printf("%I64d\n", ans);
return 0;
}
Codeforces Round #131 (Div. 1) B. Numbers dp的更多相关文章
- Codeforces Round #131 (Div. 2) B. Hometask dp
题目链接: http://codeforces.com/problemset/problem/214/B Hometask time limit per test:2 secondsmemory li ...
- Codeforces Round #131 (Div. 2) E. Relay Race dp
题目链接: http://codeforces.com/problemset/problem/214/E Relay Race time limit per test4 secondsmemory l ...
- Codeforces Round #260 (Div. 1) A - Boredom DP
A. Boredom Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/problem/A ...
- Codeforces Round #131 (Div. 2)
A. System of Equations \(a\)的范围在\(\sqrt n\)内,所以暴力枚举即可. B. Hometask 需要被2.5整除,所以末位必然为0,如果0没有出现,则直接返回-1 ...
- Codeforces Round #276 (Div. 1) D. Kindergarten dp
D. Kindergarten Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/proble ...
- Codeforces Round #533 (Div. 2) C.思维dp D. 多源BFS
题目链接:https://codeforces.com/contest/1105 C. Ayoub and Lost Array 题目大意:一个长度为n的数组,数组的元素都在[L,R]之间,并且数组全 ...
- Codeforces Round #539 (Div. 2) 异或 + dp
https://codeforces.com/contest/1113/problem/C 题意 一个n个数字的数组a[],求有多少对l,r满足\(sum[l,mid]=sum[mid+1,r]\), ...
- Codeforces Round #374 (Div. 2) C. Journey DP
C. Journey 题目连接: http://codeforces.com/contest/721/problem/C Description Recently Irina arrived to o ...
- Codeforces Round #202 (Div. 1) D. Turtles DP
D. Turtles Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/547/problem/B ...
随机推荐
- responseXML 属性
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default2.aspx.cs ...
- css3选择器——导图篇
css3选择器主要有:基本选择器 , 层次选择器, 伪类选择器 , 伪元素选择器 , 属性选择器 基本选择器 层次选择器 伪类选择器分为 动态伪类选择器, 目标伪类选择器, 语言伪类选择器, U ...
- javascript组件化(转)
javascript组件化(转) By purplebamboo 3月 16 2015 更新日期:3月 23 2015 文章目录 1. 最简陋的写法 2. 作用域隔离 3. 面向对象 4. 抽象出ba ...
- php简单缓存类
<?phpclass Cache { private $cache_path;//path for the cache private $cache_expire;//seconds ...
- 黑白棋游戏 (codevs 2743)题解
[问题描述] 黑白棋游戏的棋盘由4×4方格阵列构成.棋盘的每一方格中放有1枚棋子,共有8枚白棋子和8枚黑棋子.这16枚棋子的每一种放置方案都构成一个游戏状态.在棋盘上拥有1条公共边的2个方格称为相邻方 ...
- linux内核SPI总线驱动分析(二)(转)
简而言之,SPI驱动的编写分为: 1.spi_device就构建并注册 在板文件中添加spi_board_info,并在板文件的init函数中调用spi_register_board_info(s3 ...
- 利用JQ实现的,高仿 彩虹岛官网导航栏(学习HTML过程中的小记录)
利用JQ实现的,高仿 彩虹岛官网导航栏(学习HTML过程中的小记录) 作者:王可利(Star·星星) 总结: 今天学习的jQ类库的使用,代码重复的比较多需要完善.严格区分大小写,在 $(" ...
- CodeForces 569A 第八次比赛 C题
Description Little Lesha loves listening to music via his smartphone. But the smartphone doesn't hav ...
- 算法系列2《RSA》
1. RSA介绍 RSA公钥加密算法是1977年由Ron Rivest.Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的.RSA取名来自开发他们三者的名字.RSA是目前最有影响 ...
- android EditText获取光标位置并安插字符删除字符
android EditText获取光标位置并插入字符删除字符1.获取光标位置int index = editText.getSelectionStart(); 2.在光标处插入字符int index ...