Codeforces Round #131 (Div. 1) B. Numbers dp
题目链接:
http://codeforces.com/problemset/problem/213/B
B. Numbers
time limit per test 2 secondsmemory limit per test 256 megabytes
#### 问题描述
> Furik loves writing all sorts of problems, especially such that he can't solve himself. You've got one of his problems, the one Furik gave to Rubik. And Rubik asks you to solve it.
>
> There is integer n and array a, consisting of ten integers, indexed by numbers from 0 to 9. Your task is to count the number of positive integers with the following properties:
>
> the number's length does not exceed n;
> the number doesn't have leading zeroes;
> digit i (0 ≤ i ≤ 9) occurs in the number at least a[i] times.
#### 输入
> The first line contains integer n (1 ≤ n ≤ 100). The next line contains 10 integers a[0], a[1], ..., a[9] (0 ≤ a[i] ≤ 100) — elements of array a. The numbers are separated by spaces.
#### 输出
> On a single line print the remainder of dividing the answer to the problem by 1000000007 (109 + 7).
#### 样例
> **sample input**
> 3
> 1 1 0 0 0 0 0 0 0 0
>
> **sample output**
> 36
note
numbers 10, 110, 210, 120, 103 meet the requirements. There are other suitable numbers, 36 in total.
题意
给你0到9这十个数字,第i个数至少要用a[i]次,问能拼成的长度小于等于n的正整数(不能有前导零)
题解
dp[i][len]表示利用i到9的数字能拼成的长度为len的所有可能数。
状态转移方程:dp[i][len]=sigma(dp[i+1][len-k]*C[len][k])。
相当于是在用i+1到9凑成的长度为len-k的数字串里面塞进去k个i的所有可能数。用乘法原理可知去掉已经统计出来的len-k,我们要处理的就是从len里面选k个位置来放i。
注意:由于前导零不用考虑,而且只要统计正整数,所以我们在放0的时候,是不能让零放在第一位的,对于0我们可以特殊处理一下。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef __int64 LL;
const int maxn = 111;
const int mod = 1e9 + 7;
int dig[22],n;
LL dp[22][maxn];
LL C[maxn][maxn];
void pre() {
memset(C, 0, sizeof(C));
C[0][0] = 1;
for (int i = 1; i < maxn; i++) {
C[i][0] = 1;
for (int j = 1; j <= i; j++) {
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
C[i][j] %= mod;
}
}
}
int main() {
pre();
scanf("%d", &n);
for (int i = 0; i < 10; i++) {
scanf("%d", &dig[i]);
}
memset(dp, 0, sizeof(dp));
dp[10][0] = 1;
for (int i = 9; i > 0; i--) {
for (int j = 0; j < maxn; j++) {
for (int k = dig[i]; k <=j; k++) {
dp[i][j] += dp[i + 1][j - k] * C[j][k];
dp[i][j] %= mod;
}
}
}
for (int j = 0; j < maxn; j++) {
for (int k = dig[0]; k < j; k++) {
dp[0][j] += dp[1][j - k] * C[j - 1][k];
dp[0][j] %= mod;
}
}
LL ans = 0;
for (int j = 1; j <= n; j++) {
ans += dp[0][j];
ans %= mod;
}
printf("%I64d\n", ans);
return 0;
}
Codeforces Round #131 (Div. 1) B. Numbers dp的更多相关文章
- Codeforces Round #131 (Div. 2) B. Hometask dp
题目链接: http://codeforces.com/problemset/problem/214/B Hometask time limit per test:2 secondsmemory li ...
- Codeforces Round #131 (Div. 2) E. Relay Race dp
题目链接: http://codeforces.com/problemset/problem/214/E Relay Race time limit per test4 secondsmemory l ...
- Codeforces Round #260 (Div. 1) A - Boredom DP
A. Boredom Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/problem/A ...
- Codeforces Round #131 (Div. 2)
A. System of Equations \(a\)的范围在\(\sqrt n\)内,所以暴力枚举即可. B. Hometask 需要被2.5整除,所以末位必然为0,如果0没有出现,则直接返回-1 ...
- Codeforces Round #276 (Div. 1) D. Kindergarten dp
D. Kindergarten Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/proble ...
- Codeforces Round #533 (Div. 2) C.思维dp D. 多源BFS
题目链接:https://codeforces.com/contest/1105 C. Ayoub and Lost Array 题目大意:一个长度为n的数组,数组的元素都在[L,R]之间,并且数组全 ...
- Codeforces Round #539 (Div. 2) 异或 + dp
https://codeforces.com/contest/1113/problem/C 题意 一个n个数字的数组a[],求有多少对l,r满足\(sum[l,mid]=sum[mid+1,r]\), ...
- Codeforces Round #374 (Div. 2) C. Journey DP
C. Journey 题目连接: http://codeforces.com/contest/721/problem/C Description Recently Irina arrived to o ...
- Codeforces Round #202 (Div. 1) D. Turtles DP
D. Turtles Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/547/problem/B ...
随机推荐
- win2003以isapi的方式配置php+mysql环境(安装了shopEX)
一.准备相关组件 mysql-installer-community-5.5.29.0.zip php-5.2.17-Win32-VC6-x86 ZendOptimizer-3.3.3-Windows ...
- [leetcode]_Count and Say
题目:一开始没看懂, 后头经过WA发现 输出 的意义 是 出现的次数+值. 1 => 一个1 => 11 11 => 两个1 => 21 111=> 三个1 => ...
- 基于HTML5 的人脸识别活体认证
近几年,人脸识别技术在身份认证领域的应用已经有了较多应用,例如:支付宝.招行的取款.养老金领取等方面,但在杜绝假冒.认证安全性等方面,目前还是一个比较需要进一步解决的课题,特别是在移动端的活体认证技术 ...
- sqoop简单import使用
一.sqoop作用? sqoop是一个数据交换工具,最常用的两个工具是导入导出. 导入导出的参照物是hadoop,向hadoop导数据就是导入. 二.sqoop的版本? sqoop目前有两个版本,1. ...
- angularJS通过post方法下载excel文件
最近工作中遇到,要使用angularJS的post方法来下载excel的情况.网上找到一个帖子:http://stackoverflow.com/questions/22447952/angularj ...
- 取消界面的title
在setContentView(R.layout.activity_main)方法上面添加代码(继承Activity的写法): requestWindowFeature(Window.FEATURE_ ...
- 清除VS2012生成的不必要文件
VS2012生成的项目文件中会有一个与解决方案同名的sdf文件,并且比较大,可以删除的,具体方法如下: 英文版步骤如下: Tools->Options->Text Editor->C ...
- java和python根据对象某一个属性排序
最近在学习java,目前看到java如何对一个对象列表进行排序. 我有一个Member类: public Member(String name,Calendar birthday,Sex gender ...
- EMVTag系列13《脱机PIN》
DGI8010用于个人化借记贷记交易中使用的脱机PIN.数据强制要求加密.制卡数据传输过程中,此DGI采用DEK加密保护. 数据分组标识 '8010'的数据内容 要求 ...
- .NET开源工作流RoadFlow-流程设计-流程步骤设置-基本设置
流程属性设置完成后点击确定之后,即可进行流程步骤设置了. 点击工具栏上的步骤按钮,即可添加一个新步骤. 在新步骤图形上双击即可弹出该步骤相应属性设置框. 步骤ID:系统自动为该步骤生成的唯一ID. 步 ...