AcWing 789.数的范围

题目描述

给定一个按照升序排列的长度为n的整数数组,以及 q 个查询。

对于每个查询,返回一个元素k的起始位置和终止位置(位置从0开始计数)。

如果数组中不存在该元素,则返回“-1 -1”。

输入格式

第一行包含整数n和q,表示数组长度和询问个数。

第二行包含n个整数(均在1~10000范围内),表示完整数组。

接下来q行,每行包含一个整数k,表示一个询问元素。

输出格式

共q行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回“-1 -1”。

数据范围

1≤n≤100000

1≤q≤10000

1≤k≤10000

输入样例:

6 3

1 2 2 3 3 4

3

4

5

输出样例:

3 4

5 5

-1 -1

思路

这个题目就是一个典型的二分法,但是不是找其中的值,而是找到这个元素的边界。因为时升序数组,故我们找left时找第一个大于等于x的数的indexright时找最后一个小于等于x的数的index

上述都是从左向右看

代码如下

#include <iostream>
using namespace std; const int inf = 100010;
int q[inf]; int main(){ int n, m;
scanf("%d%d", &n, &m); for(int i = 0; i < n; ++i) scanf("%d", &q[i]); while(m--){
int x;
scanf("%d", &x); int l = 0, r = n - 1;
while(l < r){
int mid = l + r >> 1;
if(q[mid] >= x) r = mid;
else l = mid + 1;
} if(q[l] != x){//l 是边界,如果和x不等就是没有这个值
cout << "-1 -1" << endl;
}
else{
cout << l << " ";
l = 0, r = n - 1;
while(l < r){
int mid = l + r + 1 >> 1;
if(q[mid] <= x) l = mid;
else r = mid - 1;
}
cout << l << endl;
}
}
return 0;
}

其实二分法就是寻找边界,并且保证每一次边界都会落在我么们选择的区间内部,当l == r时,lr就是答案的index

二分一定有答案,但是因为可能找的值不存在,就会根据check()来返回一个值的下标(依据如思路中所述)

AcWing 789.数的范围的更多相关文章

  1. AcWing 789. 数的范围 二分+模板

    https://www.acwing.com/problem/content/791/ #include<bits/stdc++.h> using namespace std; ; int ...

  2. AcWing 790. 数的三次方根

    #include<bits/stdc++.h> using namespace std ; int main(){ double x; cin>>x; ,r=; ) { ; i ...

  3. (acwing蓝桥杯c++AB组)2.1 二分

    二分与前缀和 文章目录 二分与前缀和 二分 整数二分核心思想 整数二分模板 整数二分步骤总结: 题目链接 实数二分核心思想: 题目链接 三分法思想: 二分 难点:二分的边界问题 整数二分核心思想 确定 ...

  4. AcWing 4378. 选取数对

    y总分析:这种题(我也不知道说的是哪种题hh)一般解法为贪心或dp,而本题用的是dp. 其实个人感觉题目不是很严谨,从y总讲解和题解分析得知各个数对区间是不能重叠的,但是题目使用的是≤,感觉数对的区间 ...

  5. acwing 853. 有边数限制的最短路 模板

    地址 https://www.acwing.com/problem/content/description/855/ 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出 ...

  6. AcWing 1027. 方格取数(线性DP)

    题目链接 题目描述 设有 N×N 的方格图,我们在其中的某些方格中填入正整数,而其它的方格中则放入数字0.如下图所示: 某人从图中的左上角 A 出发,可以向下行走,也可以向右行走,直到到达右下角的 B ...

  7. AcWing 11. 背包问题求方案数

    //g[i,j]表示f[i,j]取最大值的方案数目 //体积最多是j 全部为0,v>=0 //体积恰好为j f[0][0]=0,f[i]=无穷,v>=0 //体积至少是j f[0][0]= ...

  8. AcWing 1027. 方格取数

    #include<iostream> using namespace std ; ; *N][N][N]; int w[N][N]; int n; int main() { cin> ...

  9. AcWing 853. 有边数限制的最短路 bellman-ford 结构体

    //存在负权值 处理负环 //如果能求出来 一般是不存在负权回路 //如果有负回路 那最小距离可能是负无穷 #include <cstring> #include <iostream ...

随机推荐

  1. alpha week 2/2 Scrum立会报告+燃尽图 06

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2019fall/homework/9803 小组名称:“组长”组 组长:杨天宇 组员:魏新,罗杨美慧,王歆瑶, ...

  2. MyBatis原理-拦截器

    一.MyBatis拦截器介绍 MyBatis提供了一种插件(plugin)的功能,虽然叫做插件,但其实这是拦截器功能. MyBatis 允许你在已映射语句执行过程中的某一点进行拦截调用.默认情况下,M ...

  3. ObserverPattern(观察者模式)-----Java/.Net

    当对象间存在一对多关系时,则使用观察者模式(Observer Pattern).比如,当一个对象被修改时,则会自动通知它的依赖对象.观察者模式属于行为型模式

  4. python中的enumerate、map、filter和zip函数

    引入 python内置了很多可以供我们直接调用的函数,这些函数的效率往往都非常高.我们在自己造轮子的同时,也非常有必要了解并且正确使用python给我们提供的大量的内置函数.在前面的博客里面我已经介绍 ...

  5. ACID特性及幻读的理解

    事务是关系型数据库的重要特性.它是一个包含了一条或多条SQL语句的逻辑原子单元.一个事务包含的SQL要么全部提交,要么全部回滚. Oracle 官方文档中对事务的描述如下: A transaction ...

  6. java8中的stream流遍历

    比较for循环.迭代器.java8Stream流遍历的不同 package cnom.test.testUtils; import java.io.Serializable; import java. ...

  7. matlab数组相除

    %数组的除法 clear all %清空MATLAB中的数据 a=[ ] b=[ ] c=a./b %a/b 对应位置相除 d=a.\b %b/a e=a./ %数组与常数相除 f=a/ 运行结果如下

  8. config.xml写入和读取

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  9. 观察者模式的应用:Winform窗体之间传值

    观察者模式的应用:Winform窗体传值 观察者模式的概念: 定义了对象之间的一对多依赖,这样一来,当一个对象改变状态时,它的所有依赖者都会收到通知并更新. 今天我们就学着用一下这个观察者模式,先想象 ...

  10. GC 为什么要挂起用户线程? 什么愁什么怨?

    GC 为什么要挂起用户线程? 什么愁什么怨? 前言 JVM 系列文章的第一篇.敬请期待后续. 故障描述 某年某月某日 上午,线上发生故障,经过排查,发现某核心服务 Dubbo 接口超时. 故障根源 查 ...