Floyd算法模板--详解
对于无权的图来说:
若从一顶点到另一顶点存在着一条路径,则称该路径长度为该路径上所经过的边的数目,它等于该路径上的顶点数减1。
由于从一顶点到另一顶点可能存在着多条路径,每条路径上所经过的边数可能不同,即路径长度不同,我们把路径长度最短(即经过的边数最少)的那条路径叫做最短路径,其路径长度叫做最短路径长度或最短距离。
对于带权的图来说:
考虑路径上各边上的权值,则通常把一条路径上所经边的权值之和定义为该路径的路径长度或称带权路径长度。
从源点到终点可能不止一条路径,把带权路径长度最短的那条路径称为最短路径,其路径长度(权值之和)称为最短路径长度或者最短距离。
Floyd算法
Floyd算法(Floyd-Warshall algorithm)又称为弗洛伊德算法、插点法,是解决给定的加权图中顶点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
适用范围:无负权回路即可,边权可正可负,运行一次算法即可求得任意两点间最短路。
优缺点:
Floyd算法适用于APSP(AllPairsShortestPaths),是一种动态规划算法,稠密图效果最佳,边权可正可负。此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法。
优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单
缺点:时间复杂度比较高,不适合计算大量数据。
时间复杂度:O(n^3);空间复杂度:O(n^2);
任意节点i到j的最短路径两种可能:
- 直接从i到j;
- 从i经过若干个节点k到j。
map(i,j)表示节点i到j最短路径的距离,对于每一个节点k,检查map(i,k)+map(k,j)小于map(i,j),如果成立,map(i,j) = map(i,k)+map(k,j);遍历每个k,每次更新的是除第k行和第k列的数。
步骤:
第1步:初始化map矩阵。
矩阵中map[i][j]的距离为顶点i到顶点j的权值;
如果i和j不相邻,则map[i][j]=∞。
如果i==j,则map[i][j]=0;
第2步:以顶点A(假设是第1个顶点)为中介点,若a[i][j] > a[i][1]+a[1][j],则设置a[i][j]=a[i][1]+a[1][j]。
无向图构建最短路径长度邻接矩阵:
模板代码:
有向图构建最短路径长度邻接矩阵:
步骤:
核心代码:
Floyd算法模板--详解的更多相关文章
- poj1236 Tarjan算法模板 详解
思想: 做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间最早的节点的开始时间.初始时dfn ...
- 一致性算法RAFT详解
原帖地址:http://www.solinx.co/archives/415?utm_source=tuicool&utm_medium=referral一致性算法Raft详解背景 熟悉或了解 ...
- 各大公司广泛使用的在线学习算法FTRL详解
各大公司广泛使用的在线学习算法FTRL详解 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和在线数据 ...
- C++模板详解
参考:C++ 模板详解(一) 模板:对类型进行参数化的工具:通常有两种形式: 函数模板:仅参数类型不同: 类模板: 仅数据成员和成员函数类型不同. 目的:让程序员编写与类型无关的代码. 注意:模板 ...
- 转】Mahout推荐算法API详解
原博文出自于: http://blog.fens.me/mahout-recommendation-api/ 感谢! Posted: Oct 21, 2013 Tags: itemCFknnMahou ...
- MD5算法步骤详解
转自MD5算法步骤详解 之前要写一个MD5程序,但是从网络上看到的资料基本上一样,只是讲了一个大概.经过我自己的实践,我决定写一个心得,给需要实现MD5,但又不要求很高深的编程知识的童鞋参考.不多说了 ...
- 25.C++- 泛型编程之函数模板(详解)
本章学习: 1)初探函数模板 2)深入理解函数模板 3)多参函数模板 4)重载函数和函数模板 当我们想写个Swap()交换函数时,通常这样写: void Swap(int& a, int&am ...
- 26.C++- 泛型编程之类模板(详解)
在上章25.C++- 泛型编程之函数模板(详解) 学习了后,本章继续来学习类模板 类模板介绍 和函数模板一样,将泛型思想应用于类. 编译器对类模板处理方式和函数模板相同,都是进行2次编译 类模板通 ...
- [转]Mahout推荐算法API详解
Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeepe ...
随机推荐
- java笔试之求最小公倍数
正整数A和正整数B 的最小公倍数是指 能被A和B整除的最小的正整数值,设计一个算法,求输入A和B的最小公倍数. package test; import java.util.Scanner; publ ...
- Ajax请求参数传到后台为空
1.编码格式 $.ajax({ method:'POST', url:'/midservice/studentAction/addStudent', data:$.toJSON(userDate), ...
- 解决IDEA中,maven依赖不自动补全的问题
转载: 作者:七个榴莲链接:https://www.jianshu.com/p/46a423bdde31来源:简书 遇到的问题:Maven依赖不自动补全 在idea上使用maven插件时,发现在pom ...
- 联想 Z470个人安装黑苹果参考
笔记本是联想 Z470,cpu i3-2350M 傻瓜图文式]Win系统下制作U盘CLOVER引导 EDIT部分 进去黑屏 U盘引导盘
- leetcode242 Valid Anagram
lc242 Valid Anagram 直接统计每种字母出现次数即可 class Solution { public boolean isAnagram(String s, String t) { i ...
- JZOJ5967 常数国
题目 像素有点低啊~ 算了凑合一下就好啦~ 题目大意 给你一个首尾相接的数列,每次对一个区间进行操作: 顺时针操作,如果当前值比vvv大,就交换.输出最后的vvv. 比赛思路 首先这题的时限这么仁慈, ...
- Creating a bootable Ubuntu USB stick
Windows: https://tutorials.ubuntu.com/tutorial/tutorial-create-a-usb-stick-on-windows#0 Ubuntu: http ...
- spark dataframe 将null 改为 nan
由于我要叠加rdd某列的数据,如果加数中出现nan,结果也需要是nan,nan可以做到,但我要处理的数据源中的nan是以null的形式出现的,null不能叠加,而且我也不能删掉含null的行,于是我用 ...
- 简单易学的机器学习算法—SVD奇异值分解
简单易学的机器学习算法-SVD奇异值分解 一.SVD奇异值分解的定义 假设M是一个的矩阵,如果存在一个分解: 其中的酉矩阵,的半正定对角矩阵,的共轭转置矩阵,且为的酉矩阵.这样的分解称为M的奇 ...
- jsonp 请求报Uncaught SyntaxError: Unexpected token :
$(document).ready(function() { jQuery.ajax({ type: 'GET', url: 'http://wncrunners.com/admin/colors.j ...