Description

小 \(q\) 有 \(n\) 只机器人,一开始他把机器人放在了一条数轴上,第 \(i\) 只机器人在 \(a_i\) 的位置上静止,而自己站在原点。在这之后小 \(q\) 会执行一些操作,他想要命令一个机器人向左或者向右移动 \(x\) 格。但是机器人似乎听不清小 \(q\) 的命令,事实上它们会以每秒 \(x\) 格的速度匀速移动。看着自己的机器人越走越远,小 \(q\) 很着急,他想知道当前离他(原点)最远的机器人有多远。具体的操作以及询问见输入格式。注意,不同的机器人之间互不影响,即不用考虑两个机器人撞在了一起的情况。

Input

共有 \(m\) 个事件,输入将会按事件的时间顺序给出。

第一行两个正整数 \(n\),\(m\) 。接下来一行 \(n\) 个整数,第 \(i\) 个数是 \(a_i\),表示第 \(i\) 个机器人初始的位置(初始移动速度为0)。

接下来 \(m\) 行,每行行首是一个非负整数 \(t_i\) ,表示该事件点发生的时刻(以秒为单位)。

第二个是一个字符串 \(S\),代表操作的种类。数字与字符串之间用一个空格隔开。接下来的输入按 \(S\) 的种类分类。若 \(S\) 是 \(“command”\)(不带引号),则接下来两个整数 \(k_i\) ,$ x_i$ ,表示小 \(q\) 对第 \(k_i\) 个机器人执行了操作,该机器人的速度将会被重置,变为向数轴正方向每秒移动 \(x_i\) 格(若 \(x_i\) 为负数就相当于向数轴负方向每秒移动 \(∣x_i∣\)格)。保证 \(1\leq k_i \leq n\)。若 \(S\) 是 \(“query”\)(不带引号),则你需要输出当前离原点最远的机器人有多远。

保证 $t1 \leq t2 \leq ... \leq tm $。(注:若同一时间发生多次操作,则按读入顺序依次执行)

Output

对于每个 \(query\) 询问,输出一行,包含一个整数表示正确的答案。

Sample Input

4 5

-20 0 20 100

10 command 1 10

20 command 3 -10

30 query

40 command 1 -30

50 query

Sample Output

180

280

HINT

第一个命令执行时,各个机器人的位置为:−20,0,20,100。

第二个命令执行时,各个机器人的位置为:80,0,20,100。

第一个询问时,各个机器人的位置为:180,0,−80,100。

第三个命令执行时,各个机器人的位置为:280,0,−180,100。

第二个询问时,各个机器人的位置为:−20,0,−280,100。

限制与约定

设 \(command\) 的个数为 \(C\),\(query\) 的个数为 \(Q\)。(所以 \(C+Q=m\))

对于所有的事件满足 \(0 \leq ti \leq 10^9\),对于所有的 \(command\) 满足 \(∣x_i∣ \leq 10^4\)。

对于所有的机器人满足 \(∣a_i∣ \leq 10^9\) 。

\(N,C \leq 10^5\)

\(Q \leq 5 \times 10^5\)


想法

稍稍转化一下,以时间为 \(x\) 轴,位置为 \(y\) 轴,就是一道经典的李超线段树题。

就是处理细节比较多,要离线处理插入的线段,要对时间离散化。


代码

明明是道水题,我却调了2个多小时,因为一些奇奇怪怪的原因(如 \(double\) 和 \(longlong\) 啊,对时间离散化还是动态开点啊,线段的端点问题啊。。。)

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath> using namespace std; int read(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch) && ch!='-') ch=getchar();
if(ch=='-') f=-1,ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x*f;
} const int N = 600005;
typedef double db;
typedef long long ll; struct seg{
int x0,x1;
ll k,b;
seg() { x0=x1=0; k=b=0.0; }
seg(int _x0,int _x1,ll _k,ll _b) { x0=_x0; x1=_x1; k=_k; b=_b; }
}d[N];
int tot;
int ask[N],num; int n;
ll K[N],B[N];
int st[N]; int rk[N*2],rn;
struct node{
node *ch[2];
int mx,mn;
node() { mx=mn=0; ch[0]=ch[1]=NULL; }
}pool[N*4],*root;
int cnt;
void build(node *p,int l,int r){
if(l==r) return;
int mid=(l+r)>>1;
build(p->ch[0]=&pool[++cnt],l,mid);
build(p->ch[1]=&pool[++cnt],mid+1,r);
}
inline ll cal(int x,int c) { return d[x].k*rk[c]+d[x].b; }
bool better_mn(int x,int y,int c) {
if(!x) return false;
if(!y) return true;
return cal(x,c)<cal(y,c);
}
bool better_mx(int x,int y,int c) {
if(!x) return false;
if(!y) return true;
return cal(x,c)>cal(y,c);
}
void insert_mx(node *p,int l,int r,int L,int R,int c){
if(l==L && r==R){
int mid=(l+r)>>1;
if(better_mx(c,p->mx,mid)) swap(p->mx,c);
int tl=better_mx(p->mx,c,l),tr=better_mx(p->mx,c,r);
if(c==0 || l==r || (tl && tr)) return;
if(tl) insert_mx(p->ch[1],mid+1,r,mid+1,r,c);
else insert_mx(p->ch[0],l,mid,l,mid,c);
return;
}
int mid=(l+r)>>1;
if(R<=mid) insert_mx(p->ch[0],l,mid,L,R,c);
else if(L>mid) insert_mx(p->ch[1],mid+1,r,L,R,c);
else{
insert_mx(p->ch[0],l,mid,L,mid,c);
insert_mx(p->ch[1],mid+1,r,mid+1,R,c);
}
}
void insert_mn(node *p,int l,int r,int L,int R,int c){
if(l==L && r==R){
int mid=(l+r)>>1;
if(better_mn(c,p->mn,mid)) swap(p->mn,c);
int tl=better_mn(p->mn,c,l),tr=better_mn(p->mn,c,r);
if(c==0 || l==r || (tl && tr)) return;
if(tl) insert_mn(p->ch[1],mid+1,r,mid+1,r,c);
else insert_mn(p->ch[0],l,mid,l,mid,c);
return;
}
int mid=(l+r)>>1;
if(R<=mid) insert_mn(p->ch[0],l,mid,L,R,c);
else if(L>mid) insert_mn(p->ch[1],mid+1,r,L,R,c);
else{
insert_mn(p->ch[0],l,mid,L,mid,c);
insert_mn(p->ch[1],mid+1,r,mid+1,R,c);
}
}
int Mx,Mn;
void query(node *p,int l,int r,int c){
Mx = better_mx(p->mx,Mx,c) ? p->mx : Mx ;
Mn = better_mn(p->mn,Mn,c) ? p->mn : Mn ;
if(l==r) return;
int mid=(l+r)>>1;
if(c<=mid) query(p->ch[0],l,mid,c);
else query(p->ch[1],mid+1,r,c);
} int main()
{
int m,t,id,x;
char s[10];
n=read(); m=read();
for(int i=1;i<=n;i++)
K[i]=0,B[i]=read(),st[i]=1;
while(m--){
t=read()+1;
rk[++rn]=t;
scanf("%s",s);
if(s[0]=='c'){
id=read(); x=read();
d[++tot]=seg(st[id],t,K[id],B[id]);
st[id]=t;
B[id]=K[id]*t+B[id]-1ll*x*t;
K[id]=x;
}
else ask[num++]=t;
}
for(int i=1;i<=n;i++) d[++tot]=seg(st[i],t,K[i],B[i]);
rk[++rn]=1; sort(rk+1,rk+1+rn);
rn=unique(rk+1,rk+1+rn)-rk-1;
build(root=&pool[++cnt],1,rn);
for(int i=1;i<=tot;i++){
if(d[i].x0==d[i].x1 && t!=1) continue;
d[i].x0=lower_bound(rk+1,rk+1+rn,d[i].x0)-rk;
d[i].x1=lower_bound(rk+1,rk+1+rn,d[i].x1)-rk;
insert_mx(root,1,rn,d[i].x0,d[i].x1,i);
insert_mn(root,1,rn,d[i].x0,d[i].x1,i);
}
for(int i=0;i<num;i++){
Mx=Mn=0;
ask[i]=lower_bound(rk+1,rk+1+rn,ask[i])-rk;
query(root,1,rn,ask[i]);
printf("%lld\n",max(abs(cal(Mx,ask[i])),abs(cal(Mn,ask[i]))));
} return 0;
}

[bzoj3938] [Uoj #88] Robot的更多相关文章

  1. BZOJ3938 & UOJ88:[集训队互测2015]Robot——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3938 http://uoj.ac/problem/88 小q有n只机器人,一开始他把机器人放在了一 ...

  2. 【bzoj3938】 Robot

    http://www.lydsy.com/JudgeOnline/problem.php?id=3938 (题目链接) 题意 给出数轴上$n$个点,有$m$个操作,在时间$t$让一个点以一定的速度移动 ...

  3. bzoj3938 Robot

    3938: Robot Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 336  Solved: 112[Submit][Status][Discuss ...

  4. bzoj千题计划220:bzoj3938: Robot

    http://www.lydsy.com/JudgeOnline/problem.php?id=3938 以时间为x轴,以距离为y轴,那么每个机器人的行走路径就是一条折线 把折线分段加入线段树里,然后 ...

  5. BZOJ3938:Robot

    浅谈标记永久化:https://www.cnblogs.com/AKMer/p/10137227.html 题目传送门:https://www.lydsy.com/JudgeOnline/proble ...

  6. metasploit渗透初探MR.robot(一)

    看了MR.robot,有一种研究渗透技术的冲动, 网上也看了些教程,要从kali linux说起, 下载vmware 12,http://www.vmware.com/go/tryworkstatio ...

  7. Jenkins+Gitlab CE+Robot Framework持续集成

    环境 Ubuntu 14.04.3 LTS Desktop 前提 1.在本地能执行测试脚本(pybot yourTestSuit.txt),本文不讲解如何学习使用RF框架 2.已有Gitlab环境,本 ...

  8. 【集训队互测2015】Robot

    题目描述 http://uoj.ac/problem/88 题解 维护两颗线段树,维护最大值和最小值,因为每次只有单点查询,所以可以直接在区间插入线段就可以了. 注意卡常,不要写STL,用链表把同类修 ...

  9. 编写高质量代码:改善Java程序的151个建议(第6章:枚举和注解___建议88~92)

    建议88:用枚举实现工厂方法模式更简洁 工厂方法模式(Factory Method Pattern)是" 创建对象的接口,让子类决定实例化哪一个类,并使一个类的实例化延迟到其它子类" ...

随机推荐

  1. php连接数据库并创建数据库表

    先开启本地服务器 1.输入localhost/phpmyadmin 查看本地数据库是否安装 2.在本地服务器上建一个文件夹,里面建一个php文件(如test.php) 3.连接数据库 4.在浏览器上输 ...

  2. 【33.18%】【hdu 5877】Weak Pair (3种解法)

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submissi ...

  3. fetch是什么?写一个fetch请求

    fetch是web提供的一个可以获取异步资源的api,目前还没有被所有浏览器支持,它提供的api返回的是Promise对象,所以你在了解这个api前首先得了解Promise的用法. 参考链接:http ...

  4. 洛谷——P1012拼数字符串操作(拼接排序)

    #include<bits/stdc++.h> using namespace std; bool cmp(const string &a,const string &b) ...

  5. Oracle如何分组排序并产生序号

    SELECT C.ORG_SHORTNAME, B.USER_NAME, ROW_NUMBER () OVER ( PARTITION BY B.ORG_ID ORDER BY A.TOTAL_SCO ...

  6. ApkTool工具

    ApkTool:   一款很好的反编译工具,支持Linux和Windows. 如何使用: 1:需要一个JAVA环境.由于之前已经装过JAVA 相关JDK,JRE,不赘述. 2:下载ApkTool工具: ...

  7. b方式操作文件

    f=open('test11.py','rb',encoding='utf-8') #b的方式不能指定编码 f=open('test11.py','rb') #b的方式不能指定编码 data=f.re ...

  8. DEVOPS技术实践_01:jenkins集成平台

    一.准备环境 准备三台机器 角色 IP地址 用户名 密码 jenkins-master   172.25.254.130    admin   meiyoumima gitlab 172.25.254 ...

  9. Visual Studio 2015 编译生成支持HTTPS协议的libcurl静态库

    由于之前的工作需要使用libcurl 开源项目库 在各种研究后发现无法使用HTTPS协议 后来经过各种翻阅文档,发现需要OpenSSL支持,这个需要自己下载并自己编译生成 lib 或者 dll 至于O ...

  10. Windows远程桌面管理--功能强大的远程批量管理工具【转】

    曾经,我想着要是有一款绿色小巧,功能实用的远程桌面管理工具,其界面简洁,操作便捷,能够同时远程操作多台服务器,并且多台服务器间可以自由切换,适用于网站管理人员使用的工具该有多好,苍天不负有心人,终于出 ...