python scikit-learn计算tf-idf词语权重
python的scikit-learn包下有计算tf-idf的api,研究了下做个笔记
1 安装scikit-learn包
sudo pip install scikit-learn
2 中文分词採用的jieba分词,安装jieba分词包
sudo pip install jieba
3 关于jieba分词的使用很easy,參考这里,关键的语句就是(这里简单试水,不追求效果4 )
import jieba.posseg as pseg
words=pseg.cut("对这句话进行分词")
for key in words:
print key.word,key.flag
输出结果:
对 p
这 r
句 q
话 n
进行 v
分词 n
4 採用scikit-learn包进行tf-idf分词权重计算关键用到了两个类:CountVectorizer和TfidfTransformer,详细參见这里
一个简单的代码例如以下:
# coding:utf-8
__author__ = "liuxuejiang"
import jieba
import jieba.posseg as pseg
import os
import sys
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
if __name__ == "__main__":
corpus=["我 来到 北京 清华大学",#第一类文本切词后的结果。词之间以空格隔开
"他 来到 了 网易 杭研 大厦",#第二类文本的切词结果
"小明 硕士 毕业 与 中国 科学院",#第三类文本的切词结果
"我 爱 北京 天安门"]#第四类文本的切词结果
vectorizer=CountVectorizer()#该类会将文本中的词语转换为词频矩阵,矩阵元素a[i][j] 表示j词在i类文本下的词频
transformer=TfidfTransformer()#该类会统计每一个词语的tf-idf权值
tfidf=transformer.fit_transform(vectorizer.fit_transform(corpus))#第一个fit_transform是计算tf-idf。第二个fit_transform是将文本转为词频矩阵
word=vectorizer.get_feature_names()#获取词袋模型中的全部词语
weight=tfidf.toarray()#将tf-idf矩阵抽取出来。元素a[i][j]表示j词在i类文本中的tf-idf权重
for i in range(len(weight)):#打印每类文本的tf-idf词语权重,第一个for遍历全部文本,第二个for便利某一类文本下的词语权重
print u"-------这里输出第",i,u"类文本的词语tf-idf权重------"
for j in range(len(word)):
print word[j],weight[i][j]
程序输出:每行格式为:词语 tf-idf权重
-------这里输出第 0 类文本的词语tf-idf权重------ #该类相应的原文本是:"我来到北京清华大学"
中国 0.0
北京 0.52640543361
大厦 0.0
天安门 0.0
小明 0.0
来到 0.52640543361
杭研 0.0
毕业 0.0
清华大学 0.66767854461
硕士 0.0
科学院 0.0
网易 0.0
-------这里输出第 1 类文本的词语tf-idf权重------ #该类相应的原文本是: "他来到了网易杭研大厦"
中国 0.0
北京 0.0
大厦 0.525472749264
天安门 0.0
小明 0.0
来到 0.414288751166
杭研 0.525472749264
毕业 0.0
清华大学 0.0
硕士 0.0
科学院 0.0
网易 0.525472749264
-------这里输出第 2 类文本的词语tf-idf权重------ #该类相应的原文本是: "小明硕士毕业于中国科学院“
中国 0.4472135955
北京 0.0
大厦 0.0
天安门 0.0
小明 0.4472135955
来到 0.0
杭研 0.0
毕业 0.4472135955
清华大学 0.0
硕士 0.4472135955
科学院 0.4472135955
网易 0.0
-------这里输出第 3 类文本的词语tf-idf权重------ #该类相应的原文本是: "我爱北京天安门"
中国 0.0
北京 0.61913029649
大厦 0.0
天安门 0.78528827571
小明 0.0
来到 0.0
杭研 0.0
毕业 0.0
清华大学 0.0
硕士 0.0
科学院 0.0
网易 0.0
注:这里随便举了几个文本,所以tf-idf也没什么实际价值,旨在说明scikit-learn包关于tf-idf计算API的调用
python scikit-learn计算tf-idf词语权重的更多相关文章
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- tf–idf算法解释及其python代码实现(下)
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...
- tf–idf算法解释及其python代码实现(上)
tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...
- 文本分类学习(三) 特征权重(TF/IDF)和特征提取
上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...
- tf–idf算法解释及其python代码
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- python使用scikit-learn计算TF-IDF
1 Scikit-learn下载安装 1.1 简介 1.2 安装软件 2 TF-IDF基础知识 2.1 TF-IDF概念 2.2 举例说明计算 3 Scikit-Learn中计算TF-IDF 3.1 ...
- 信息检索中的TF/IDF概念与算法的解释
https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...
- TF/IDF(term frequency/inverse document frequency)
TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...
随机推荐
- Delphi代码创建形式规范 1.0
Delphi代码创建形式规范 1.0 本规范的目的:给自己的代码一个统一而标准的外观,增强 可读性,可理解性,可维护性 本规范的原则:名称反映含义,形式反映结构 1.单元风格 ...
- namespace 命名空间
namespace作用:资源隔离 当我们不指定namespace时,默认放在default下 创建namespace kubectl create namespace 资源名称 在生产中,我们建议一个 ...
- python pywin32学习笔记
参考博客链接 https://blog.csdn.net/polyhedronx/article/details/81988948 参考博客链接 https://www.cnblogs.com/zha ...
- <scrapy爬虫>爬取360妹子图存入mysql(mongoDB还没学会,学会后加上去)
1.创建scrapy项目 dos窗口输入: scrapy startproject images360 cd images360 2.编写item.py文件(相当于编写模板,需要爬取的数据在这里定义) ...
- c#使用打印机
在windows应用程序中文档的打印是一项非常重要的功能,在以前一直是一个非常复杂的工作,Microsoft .net Framework的打印功能都以组件的方式提供,为程序员提供了很大的方便,但是这 ...
- 如何在neo4j中创建新数据库?
解决方案一: 由于使用Neo3.x创建新数据库而不删除现有数据库,所以只需在$NEO4J_HOME的conf的目录编辑neo4j.conf. 搜寻dbms.active_database=,其默认值应 ...
- Linux vi和vim编辑器(1)
1:vi和vim的三种常见模式 1.1正常模式 在正常模式下,我们可以使用快捷键: 以vim打开一个档案就直接进入一般模式了(这是默认的模式).在这个模式中,你可以使用[上下左右」按键来移动光标,你 ...
- 【学术篇】状态压缩动态规划——POJ3254/洛谷1879 玉米田Corn Field
我要开状压dp的坑了..直播从入门到放弃系列.. 那就先拿一道状压dp的水题练练手吧.. 然后就找到了这一道..这道题使我清醒地认识到阻碍我的不是算法,而是视力= = 传送门: poj:http:// ...
- C#多线程实现方法——线程池(Thread Pool)
ThreadPool使用 同步机制 ThreadPool使用 需要定义waitcallback委托形式如 public delegate void WaitCallback(object stat ...
- 转:Wireshark基本介绍和学习TCP三次握手
源地址:http://www.cnblogs.com/TankXiao/archive/2012/10/10/2711777.html 之前写过一篇博客:用 Fiddler 来调试HTTP,HTTPS ...