hdu 5793 A Boring Question(2016第六场多校)
A Boring Question
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 487 Accepted Submission(s):
271
∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=?
We define that (kj+1kj)=kj+1!kj!(kj+1−kj)! . And (kj+1kj)=0 while kj+1<kj .
You have to get the answer for each n and m that given to you.
For example,if n=1 ,m=3 ,
When k1=0,k2=0,k3=0,(k2k1)(k3k2)=1 ;
Whenk1=0,k2=1,k3=0,(k2k1)(k3k2)=0 ;
Whenk1=1,k2=0,k3=0,(k2k1)(k3k2)=0 ;
Whenk1=1,k2=1,k3=0,(k2k1)(k3k2)=0 ;
Whenk1=0,k2=0,k3=1,(k2k1)(k3k2)=1 ;
Whenk1=0,k2=1,k3=1,(k2k1)(k3k2)=1 ;
Whenk1=1,k2=0,k3=1,(k2k1)(k3k2)=0 ;
Whenk1=1,k2=1,k3=1,(k2k1)(k3k2)=1 .
So the answer is 4.
T ,(1≤T≤10000)
Then T lines follow,the i-th line contains two integers n ,m ,(0≤n≤109,2≤m≤109)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#define ll long long
#define mod 1000000007
using namespace std; ll mat(ll a,ll b)///a^b,结果对mod取膜,b的值很大的时候
{
ll c=;
if(b==) return a%mod; ///当b为1时,只剩下最后一个a
else if(b&) ///b为奇数
return mat(a,b-)*a%mod; ///把单独的a拿出来
else ///b为偶数
return mat(a*a%mod,b/)%mod; ///直接相乘,系数除以2
} ll extend_gcd(ll a,ll b,ll &x,ll &y)
{
if(a==&&b==) return -;//无最大公约数
if(b==){x=;y=;return a;}
ll d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
//*********求逆元素*******************
//ax = 1(mod n)
ll mod_reverse(ll a,ll n)
{
ll x,y;
ll d=extend_gcd(a,n,x,y);
if(d==) return (x%n+n)%n;
else return -;
} ll c(ll n,ll m)
{
ll i,j,t1,t2,ans;
t1=((mat(m,n+)-)%mod+mod)%mod;
t2=(m-)%mod;
return t1*mod_reverse(t2,mod)%mod;
} int main()
{
int T,n,m;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
ll ans=c(n,m);
printf("%I64d\n",ans);
}
return ;
}
hdu 5793 A Boring Question(2016第六场多校)的更多相关文章
- HDU 5793 - A Boring Question
HDU 5793 - A Boring Question题意: 计算 ( ∑(0≤K1,K2...Km≤n )∏(1≤j<m) C[Kj, Kj+1] ) % 1000000007=? (C[ ...
- HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场
A Boring Question Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 5793 A Boring Question (找规律 : 快速幂+逆元)
A Boring Question 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5793 Description Input The first l ...
- HDU 5793 A Boring Question (找规律 : 快速幂+乘法逆元)
A Boring Question Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 5793 A Boring Question 多校训练
There are an equation. ∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=?∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1 ...
- HDU 5793 A Boring Question ——(找规律,快速幂 + 求逆元)
参考博客:http://www.cnblogs.com/Sunshine-tcf/p/5737627.html. 说实话,官方博客的推导公式看不懂...只能按照别人一样打表找规律了...但是打表以后其 ...
- 数学--数论--Hdu 5793 A Boring Question (打表+逆元)
There are an equation. ∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=? We define that (kj+1kj)=kj+1!kj! ...
- 2016多校第六场题解(hdu5793&hdu5794&hdu5795&hdu5800&hdu5802)
这场就做出一道题,怎么会有窝这么辣鸡的人呢? 1001 A Boring Question(hdu 5793) 很复杂的公式,打表找的规律,最后是m^0+m^1+...+m^n,题解直接是(m^(n+ ...
- 多校6 1001 HDU5793 A Boring Question (推公式 等比数列求和)
题解:http://bestcoder.hdu.edu.cn/blog/ 多校6 HDU5793 A Boring Question // #pragma comment(linker, " ...
随机推荐
- XML解析器之JAXP与DOM4J
XML是一种数据格式,那么需要对XML文件进行操作就需要用到XML解析器---------针对dom方式和sax方式提供了不同的解析技术-----需要不同的XML解析器 dom方式:会把文档中所有元素 ...
- springMVC原理解析
1:SpringMVC运行原理 2:工作流程 (1)客户端(浏览器)发送请求,直接请求到DispatcherServlet. (2)DispatcherServlet根据请求信息调用HandlerMa ...
- CentOS 6.8 Java 环境搭建
1.搜索 Java 1.7 64 2.下载 文件 3.Xshell 安装lrzsz 4.选择路径 5.使用 rz 命令选择上传 6.打开 /etc/profile vim /etc/profile ...
- 洛谷P1315 [NOIP2011提高组Day2T3] 观光公交
P1315 观光公交 题目描述 风景迷人的小城Y 市,拥有n 个美丽的景点.由于慕名而来的游客越来越多,Y 市特意安排了一辆观光公交车,为游客提供更便捷的交通服务.观光公交车在第 0 分钟出现在 1号 ...
- 【洛谷P3131】 【USACO16JAN】子共七
P3131 [USACO16JAN]子共七Subsequences Summing to Sevens 题目描述 Farmer John's cows are standing in a row, a ...
- Leetcode55. Jump Game跳跃游戏
给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 判断你是否能够到达最后一个位置. 示例 1: 输入: [2,3,1,1,4] 输出: true ...
- LUOGU P1512 伊甸园日历游戏
题目描述 Adam和Eve玩一个游戏,他们先从1900.1.1到2001.11.4这个日期之间随意抽取一个日期出来.然后他们轮流对这个日期进行操作: 1 : 把日期的天数加1,例如1900.1.1变到 ...
- web前端学习(四)JavaScript学习笔记部分(1)-- JavaScript基础教程
1.JavaScript基础教程 1.1.Javascript基础-介绍.实现.输出 1.1.1.JavaScript是互联网上最流行的脚本语言,这门语言可用于web和HTML,更可广泛用于服务端.p ...
- web前端学习(二)html学习笔记部分(6)--fileAPI
1.2.18 html5 File API的应用 1.2.18.1 实现可选择列表 通过为列表项增加一个选择框,进而实现列表的多选和对选择文件的删除.同时,在选择.取消选择时实现操作栏的切换. 1. ...
- UI标签库专题五:JEECG智能开发平台 Tabs(选项卡父标签)
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/zhangdaiscott/article/details/28956223 tools string ...