卷积步长(Strided convolutions)

卷积中的步幅是另一个构建卷积神经网络的基本操作,让我向你展示一个例子。

如果你想用3×3的过滤器卷积这个7×7的图像,和之前不同的是,我们把步幅设置成了2。你还和之前一样取左上方的3×3区域的元素的乘积,再加起来,最后结果为91。

只是之前我们移动蓝框的步长是1,现在移动的步长是2,我们让过滤器跳过2个步长,注意一下左上角,这个点移动到其后两格的点,跳过了一个位置。然后你还是将每个元素相乘并求和,你将会得到的结果是100。

 

现在我们继续,将蓝色框移动两个步长,你将会得到83的结果。当你移动到下一行的时候,你也是使用步长2而不是步长1,所以我们将蓝色框移动到这里:

 

注意到我们跳过了一个位置,得到69的结果,现在你继续移动两个步长,会得到91,127,最后一行分别是44,72,74。

 

所以在这个例子中,我们用3×3的矩阵卷积一个7×7的矩阵,得到一个3×3的输出。输入和输出的维度是由下面的公式决定的。如果你用一个f×f的过滤器卷积一个n×n的图像,你的padding为p,步幅为s,在这个例子中s=2,你会得到一个输出,因为现在你不是一次移动一个步子,而是一次移动s个步子,输出于是变为((n+2p-f)/s+1)×((n+2p-f)/s+1)

在我们的这个例子里,n=7,p=0,f=3,s=2, (7+0-3)/2+1=3,即3×3的输出。

 

现在只剩下最后的一个细节了,如果商不是一个整数怎么办?在这种情况下,我们向下取整(记得哦,这个比较重要)⌊ ⌋这是向下取整的符号这也叫做对z进行地板除(floor),这意味着z向下取整到最近的整数。

这个原则实现的方式是,你只在蓝框完全包括在图像或填充完的图像内部时,才对它进行运算。如果有任意一个蓝框移动到了外面,那你就不要进行相乘操作,这是一个惯例。你的3×3的过滤器必须完全处于图像中或者填充之后的图像区域内才输出相应结果,这就是惯例。因此正确计算输出维度的方法是向下取整,以免(n+2p-f)/s不是整数。

 

总结一下维度情况,如果你有一个n×n的矩阵或者n×n的图像,与一个f×f的矩阵卷积,或者说f×f的过滤器。Padding是p,步幅为s没输出尺寸就是这样:

 

可以选择所有的数使结果是整数是挺不错的,尽管一些时候,你不必这样做,只要向下取整也就可以了。你也可以自己选择一些n,f,p和s的值来验证这个输出尺寸的公式是对的。

 

在讲下一部分之前,这里有一个关于互相关和卷积的技术性建议,这不会影响到你构建卷积神经网络的方式,但取决于你读的是数学教材还是信号处理教材,在不同的教材里符号可能不一致。如果你看的是一本典型的数学教科书,那么卷积的定义是做元素乘积求和,实际上还有一个步骤是你首先要做的,也就是在把这个6×6的矩阵和3×3的过滤器卷积之前,首先你将3×3的过滤器沿水平和垂直轴翻转,所以

这相当于将3×3的过滤器做了个镜像,在水平和垂直轴上(整理者注:此处应该是先顺时针旋转90得到

再水平翻转得到

 

然后你再把这个翻转后的矩阵复制到这里(左边的图像矩阵),你要把这个翻转矩阵的元素相乘来计算输出的4×4矩阵左上角的元素,如图所示。然后取这9个数字,把它们平移一个位置,再平移一格,以此类推。

所以我们在这定义卷积运算时,我们跳过了这个镜像操作。从技术上讲,我们实际上做的,我们在前面视频中使用的操作,有时被称为互相关(cross-correlation)而不是卷积(convolution)。但在深度学习文献中,按照惯例,我们将这(不进行翻转操作)叫做卷积操作。

总结来说,按照机器学习的惯例,我们通常不进行翻转操作。从技术上说,这个操作可能叫做互相关更好。但在大部分的深度学习文献中都把它叫做卷积运算,因此我们将在这些视频中使用这个约定。如果你读了很多机器学习文献的话,你会发现许多人都把它叫做卷积运算,不需要用到这些翻转。

事实证明在信号处理中或某些数学分支中,在卷积的定义包含翻转,使得卷积运算符拥有这个性质,即(A*B)*C=A*(B*C),这在数学中被称为结合律。这对于一些信号处理应用来说很好,但对于深度神经网络来说它真的不重要,因此省略了这个双重镜像操作,就简化了代码,并使神经网络也能正常工作。

根据惯例,我们大多数人都叫它卷积,尽管数学家们更喜欢称之为互相关,但这不会影响到你在编程练习中要实现的任何东西,也不会影响你阅读和理解深度学习文献。

现在你已经看到了如何进行卷积,以及如何使用填充,如何在卷积中选择步幅。但到目前为止,我们所使用的是关于矩阵的卷积,例如6×6的矩阵。在下一个笔记中,你将看到如何对立体进行卷积,这将会使你的卷积变得更加强大,让我们继续下一个笔记吧。

【33】卷积步长讲解(Strided convolutions)的更多相关文章

  1. 【39】为什么使用卷积?(Why convolutions?)

    为什么使用卷积?(Why convolutions?) 我们来分析一下卷积在神经网络中如此受用的原因,然后对如何整合这些卷积,如何通过一个标注过的训练集训练卷积神经网络做个简单概括.和只用全连接层相比 ...

  2. [DeeplearningAI笔记]卷积神经网络1.4-1.5Padding与卷积步长

    4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4Padding 一张\(6*6\)大小的图片,使用\(3*3\)的卷积核设定步长为1,经过卷积操作后得到一个\(4*4 ...

  3. ubuntu之路——day17.1 卷积操作的意义、边缘检测的示例、filter与padding的关系、卷积步长

    感谢吴恩达老师的公开课,以下图片均来自于吴恩达老师的公开课课件 为什么要进行卷积操作? 我们通过前几天的实验已经做了64*64大小的猫图片的识别. 在普通的神经网络上我们在输入层上输入的数据X的维数为 ...

  4. tf入门-卷积步长strides参数的具体解释

    conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='SAME') 这是一个常见的卷积操作,其中stri ...

  5. [C4W1] Convolutional Neural Networks - Foundations of Convolutional Neural Networks

    第一周 卷积神经网络(Foundations of Convolutional Neural Networks) 计算机视觉(Computer vision) 计算机视觉是一个飞速发展的一个领域,这多 ...

  6. Coursera机器学习+deeplearning.ai+斯坦福CS231n

    日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Wee ...

  7. 可分离卷积详解及计算量 Basic Introduction to Separable Convolutions

    任何看过MobileNet架构的人都会遇到可分离卷积(separable convolutions)这个概念.但什么是“可分离卷积”,它与标准的卷积又有什么区别?可分离卷积主要有两种类型: 空间可分离 ...

  8. 深度学习:Keras入门(二)之卷积神经网络(CNN)

    说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式 ...

  9. 卷积神经网络(Convolutional Neural Network,CNN)

    全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...

随机推荐

  1. OSPF配置实验(一)

    单区域OSPF 命令: R1(config)#router ospf 1        //启动OSPF进程 R1(config-router)#router-id 1.1.1.1        // ...

  2. 利用django打造自己的工作流平台(三):团队成员任务跟踪系统

    近期受疫情影响公司食堂不开放,为解决同事们的吃饭问题,部门需要在每周五统计下周的订餐情况:员工根据个人意愿选择是否从公司订下周的午餐和晚餐,一旦确定一周保持不变. 通常要完成一次部门内员工的订餐信息收 ...

  3. JVM源码分析之临门一脚的OutOfMemoryError完全解读

    概述 OutOfMemoryError,说的是java.lang.OutOfMemoryError,是JDK里自带的异常,顾名思义,说的就是内存溢出,当我们的系统内存严重不足的时候就会抛出这个异常(P ...

  4. 【转载】Linux设备树(Device Tree)机制

    转:Linux设备树(Device Tree)机制   目录 1. 设备树(Device Tree)基本概念及作用2. 设备树的组成和使用 2.1. DTS和DTSI 2.2. DTC 2.3. DT ...

  5. 珠峰-cookie相关的东西

    ####  md5 #### #####

  6. linux--解决celery消息中间件带来的一系列问题

    启动celery定时任务 1.celery -A OpsManage beat -l info -S django 2.celery -A OpsManage worker -l info 此时消息中 ...

  7. Redis 为什么这么快?

    1. 纯内存操作,肯定快 数据存储在内存中,读取的时候不需要进行磁盘的 IO 2. 单线程,无锁竞争损耗 单线程保证了系统没有线程的上下文切换 使用单线程,可以避免不必要的上下文切换和竞争条件,没有多 ...

  8. [20200129]子光标不共享BIND_EQUIV_FAILURE.txt

    [20200129]子光标不共享BIND_EQUIV_FAILURE.txt --//生产系统再次遇到大量BIND_EQUIV_FAILURE原因导致子光标的情况.我看了我以前测试遇到的情况.--// ...

  9. linux下(centos7)docker安装

    参考链接https://docs.docker.com/install/linux/docker-ce/centos/ 第一步,确定是centos7及以上版本 cat /etc/redhat-rele ...

  10. springboot~HttpPut开启application/x-www-form-urlencoded

    在使用spring框架时,默认情况下@RequestParam注解只到接受Get和Post请求参数 ,而对于Put来说默认是使用@ReqeustBody注解的,如果希望为Put也开启@RequestP ...