22.json&pickle&shelve
转载:https://www.cnblogs.com/yuanchenqi/article/5732581.html
json
之前我们学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了,所以eval的重点还是通常用来执行一个字符串表达式,并返回表达式的值。
import json
x="[null,true,false,1]"
print(eval(x))
print(json.loads(x))
什么是序列化?
我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
json
如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:
#----------------------------序列化
import json dic={'name':'alvin','age':23,'sex':'male'}
print(type(dic))#<class 'dict'> j=json.dumps(dic)
print(type(j))#<class 'str'> f=open('序列化对象','w')
f.write(j) #-------------------等价于json.dump(dic,f)
f.close()
#-----------------------------反序列化<br>
import json
f=open('序列化对象')
data=json.loads(f.read())# 等价于data=json.load(f)
# eval
# dic='{"name":"alex"}'
# f=open("hello","w")
# f.write(dic) # f_read=open("hello","r")
# data=f_read.read()
# print(type(data))
# data=eval(data)
# print(data["name"]) # import json
#
#
# dic={'name':'alex'}#---->{"name":"alex"}----->'{"name":"alex"}'
# i=8 #---->'8'
# s='hello' #---->"hello"------>'"hello"'
# l=[11,22] #---->"[11,22]"
#
# f=open("new_hello","w") # dic_str=json.dumps(dic)
# f.write(dic_str) #json.dump(dic,f) # f_read=open("new_hello","r")
# data=json.loads(f_read.read()) # data=json.load(f) #
# print(data["name"])
# print(data)
# print(type(data)) # print(s)
# print(type(s)) # data=json.dumps(dic)
#
# print(data) #{"name": "alex"}
# print(type(data)) #注意:
# import json
#
# with open("Json_test","r") as f:
# data=f.read()
# data=json.loads(data)
# print(data["name"])
注意:
import json
#dct="{'1':111}"#json 不认单引号
#dct=str({"1":111})#报错,因为生成的数据还是单引号:{'one': 1} dct='{"1":"111"}'
print(json.loads(dct)) #conclusion:
# 无论数据是怎样创建的,只要满足json格式,就可以json.loads出来,不一定非要dumps的数据才能loads 注意点
pickle
Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。
import pickle dic = {'name': 'alvin', 'age': 23, 'sex': 'male'} print(type(dic)) # <class 'dict'> # j = pickle.dumps(dic)
# print(type(j)) # <class 'bytes'>
#
# f = open('序列化对象_pickle', 'wb') # 注意是w是写入str,wb是写入bytes,j是'bytes'
# f.write(j) # -------------------等价于pickle.dump(dic,f)
#
# f.close()
# # -------------------------反序列化
import pickle f = open('序列化对象_pickle', 'rb') data = pickle.loads(f.read()) # 等价于data=pickle.load(f) print(data['age'])
shelve
shelve模块比pickle模块简单,只有一个open函数,返回类似字典的对象,可读可写;key必须为字符串,而值可以是python所支持的数据类型
import shelve f = shelve.open(r'shelve1') # 目的:将一个字典放入文本 f={}
#
# f['stu1_info']={'name':'alex','age':'18'}
# f['stu2_info']={'name':'alvin','age':'20'}
# f['school_info']={'website':'oldboyedu.com','city':'beijing'}
# f.close() print(f.get('stu1_info')['age']) # dic={}
#
# dic["name"]="alvin"
# dic["info"]={"name":"alex"}
22.json&pickle&shelve的更多相关文章
- python序列化: json & pickle & shelve 模块
一.json & pickle & shelve 模块 json,用于字符串 和 python数据类型间进行转换pickle,用于python特有的类型 和 python的数据类型间进 ...
- python 常用模块 time random os模块 sys模块 json & pickle shelve模块 xml模块 configparser hashlib subprocess logging re正则
python 常用模块 time random os模块 sys模块 json & pickle shelve模块 xml模块 configparser hashlib subprocess ...
- day6_python序列化之 json & pickle & shelve 模块
一.json & pickle & shelve 模块 json,用于字符串 和 python数据类型间进行转换pickle,用于python特有的类型 和 python的数据类型间进 ...
- python 全栈开发,Day25(复习,序列化模块json,pickle,shelve,hashlib模块)
一.复习 反射 必须会 必须能看懂 必须知道在哪儿用 hasattr getattr setattr delattr内置方法 必须能看懂 能用尽量用__len__ len(obj)的结果依赖于obj. ...
- 常用模块(random,os,json,pickle,shelve)
常用模块(random,os,json,pickle,shelve) random import random print(random.random()) # 0-1之间的小数 print(rand ...
- 模块简介:(random)(xml,json,pickle,shelve)(time,datetime)(os,sys)(shutil)(pyYamal,configparser)(hashlib)
Random模块: #!/usr/bin/env python #_*_encoding: utf-8_*_ import random print (random.random()) #0.6445 ...
- Day 4-5 序列化 json & pickle &shelve
序列化: 序列化是指把内存里的数据类型转变成字符串,以使其能存储到硬盘或通过网络传输到远程,因为硬盘或网络传输时只能接受bytes. 反序列化: 把字符转成内存里的数据类型. 用于序列化的两个模块.他 ...
- 模块 - json/pickle/shelve/xml/configparser
序列化: 序列化是指把内存里的数据类型转变成字符串,以使其能存储到硬盘或通过网络传输到远程,因为硬盘或网络传输时只能接受bytes. 为什么要序列化: 有种办法可以直接把内存数据(eg:10个列表,3 ...
- Python模块:shutil、序列化(json&pickle&shelve)、xml
shutil模块: 高级的 文件.文件夹.压缩包 处理模块 shutil.copyfileobj(fscr,fdst [, length]) # 将文件内容拷贝到另一个文件中 import shu ...
随机推荐
- Java练习 SDUT-2618_手机键盘
手机键盘 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 大家应该都见过那种九键的手机键盘,键盘上各字母的分布如下图所示 ...
- js 获取js自身参数
页面中有<script id="comjs" src="js/common.js?cname=mad&cid=500&uid=smpx"& ...
- Kubernetes1.3新特性:新的资源回收控制器
(一) 核心概念 在kubernetes1.3中新增了一个资源回收控制器GarbaseCollector,用这个控制器来替代kubernetes1.3中的资源回收控制器GC. 如下为kubernet ...
- sql常用内置函数
用于测试的表: 一.SUM 返回数值列的总数. 执行查询: select SUM(Score) as 总得分 from Students 效果: 二.MAX 返回一列中的最大值.. 执行查询: sel ...
- Win7中右下角“小喇叭”声音图标消失的解决方法?(已解决)
Win7中右下角"小喇叭"声音图标消失的解决方法?(已解决) 1.打开任务管理器. 2.右键explorer.exe选择右键结束. 3.在按ctrl+shift+Esc,或者用al ...
- 全文索引——CONTAINS 语法
Like直接在数据据中查找可以查到所有所需记录但是会扫描整个表会影响性能CONTAINS是基于全文索引进行查询,查询结果受系统全文索引分词的方法影响查询结果会不全.Select * FROM A Wh ...
- Mysql到Java数据类型映射的JDBC规范
- 小程序中使用threejs
webgl调试 起初使用threejs 在小程序里面调试,明明是按着官方的文档来,但是会发现开发者工具上面会提示getContext,经过一翻摸索,发现webgl调试只能在手机端调试. 总结:webg ...
- [C#] 调试silverlight的时候,总是报“向占位程序传送了空的索引指针”
这是由于visual studio在调试silverlight的时候,必须和ie一起工作. 按照以下步骤可以把ie设为visual studio的默认浏览器(不用修改操作系统的默认浏览器): 1) 在 ...
- CSS3 Box-shadow 阴影效果用法
一.基本用法: 二.内阴影用法: 三.阴影扩展长度值: box-shadow: 4rpx 4rpx 8rpx #aaa;