SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型

在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类别(因变量是定序数据)的影响程度是相同的。如果因变量有4个水平,那么有序多元逻辑回归分析最终会产生3个回归方程,这些回归方程除了常数项以外,其余的部分都是一样的,这就体现了模型的假设。因为有这个假设的存在,所以做有序多元Logistic回归分析时,可以同时输出平行性检验结果。如果检验结果不通过,那么可以考虑采用无序多元Logistic回归分析。

无序多元Logistic回归分析

无序多元Logistic回归模型主要用于分析因变量是定类型数据的情况,除此之外,如果因变量为有序分类,但是没有通过平行性检验,也可以该模型进行分析。

无序多元Logistic回归模型的分析原理和哑变量的设置逻辑是一样的,都需要在多个水平中定义某一个水平为参照水平(SPSS默认将取值最大的水平定为参照水平),其它水平则与其进行相比,从而建立水平数减1个广义Logit模型(General
Logits
Model)。例如,假设现在有一个4水平的因变量,取值水平分别定为数值1,2,3,4,初步筛选出k个自变量,那么可以建立以取值为4的水平为参照水平的关于因变量的3个广义Logit模型:

案例分析

2016年的美国总统大选结果让外界大跌眼镜,共和党候选人特朗普在完全不被看好的情况下,击败民主党候选人希拉里,夺得总统大选宝座。民主党和共和党因为历史的原因,支持者的身份有很大的不同。

美国民主党建于1791年,由部分种植园主和与南方奴隶主有联系的企业家组成,当时叫共和党,1794年改为民主共和党,1840年正式称民主党。1861年南北战争结束后民主党一蹶不振,1933年罗斯福利用经济危机引起的人民不满情绪竞选总统获胜并连任四届总统,民主党因而连续执政20年。民主党群众基础主要是劳工、公务员、少数民族和黑人。

美国共和党成立于1854年,由反对奴隶制的东北部工商业主及中西部开发各州的农业企业家代表组成。1860年林肯当选总统,共和党开始执政,并在南北战争中击败南方奴隶主势力平息了内战。1860年至1933年70多年中,除16年外,美国均由共和党执政。该党群众基础主要是郊区和南方的白领工人及年轻人,二战后中产阶级为其新的支持力量。

从上世纪的30年代开始,各种杂志和咨询机构就开始进行美国总统大选预测。期间产生了非常多的预测模型,它们考虑了各种可能影响选民选择的因素。现在有一份1992年美国总统大选前,某小型民调机构根据它们的模型收集到的1847名选民数据,如下图所示。包括了选民的候选人选择、年龄、年龄分组、受教育年限、学历和性别。

分析思路

通过观察自变量信息会发现,受教育年限和最高学历虽然存在信息重叠,但是因为受教育年限不是均匀分布的,它总是集中在取得学历的那年,例如,初中毕业就是9年,高中毕业就是12年,很少人会中途退学,因此7到9、10到12年的数据是非常少的。同时,不同学历的选民,他们选择会有很大不用,因此在本案例中将两个变量纳入分析。本案例的因变量是三个总统候选人,因此要采用无序多元Logistic回归模型来分析。

分析步骤

1、选择菜单【分析】-【回归】-【多元Logistic】,将候选人选为因变量,点击参考类别,将最后一个类别选为参考类别,这里最后一个类别是克林顿。将分类型自变量最高学历和性别选入因子,将年龄和受教育年限选入协变量。

2、点击保存按钮,将以下选项都选中,结果输出时,将会产生6个新的变量。分别是3个类别的预测概率、预测类别、预测类别概率和实际类别概率。

3、点击确定,输出结果。

结果解释

1、个案处理摘要;这个不需要解释,该表格输出选入分类型变量的类型以及各种类型包含的个案数及比例。

2、模型拟合信息;显著性小于0.01,说明模型中至少有一个自变量对因变量有显著影响,回归系数与0有显著性差异。结果共输出了三个伪R方值,都非常的小,说明模型的拟合结果不好,但是这里需要强调,逻辑回归的伪R方值通常都是较低的,不能完全以伪R方值做出模型拟合效果很差的结论,还应该集合其它结果来看。

3、SPSS对此给出了似然比检验结果,检验的结果显示是除受教育年限以外,其它三个自变量均有统计学意义,也就是说对因变量的概率有显著影响。

4、回归系数表格;从显著性可以知道每个自变量在每个回归方程中,对因变量是否有显著性的影响。这里需要强调,分类变量在这里以哑变量的形式存在,以取值最高的类别为参考类别,在所有哑变量中,只要有一个哑变量有统计学意义,就需要将所有哑变量纳入回归方程中,哑变量需要同进退。

可以根据上面的回归系数写出两个无序多元Logistic回归模型:

5、预测分类表格;从预测分类结果来看,本案例产生的无序多元逻辑回归模型的综合预测准确率仅为50%,只有克林顿的预测正确率高于70%,说明该模型的拟合效果是非常差的。还需要对模型进行有效的改进。

从以上结果来看,总统大选结果预测模型需要考虑的因素是非常多和复杂的,这也是为什么每家结构都会有自己的预测结果。除了预测模型,样本数据的采集方式,采集人群同样会对结果产生极大的影响。这里给大家讲一个非常有趣的预测故事:在1936年美国大选中,民主党候选人罗斯福对战共和党候选人阿尔夫·兰登。《文学文摘》此前准确预测过5次总统选举结果。1936年大选,《文学文摘》当年邮寄出1000万份问卷,回收到230万份,样本数量很大。经过分析后,他们预测共和党候选人阿尔夫·兰登会战胜罗斯福当选总统。结果却是罗斯福获得了压倒性的胜利,在48个州中胜出46个。原来,《文学文摘》是按照电话号码本选出的这1000万调查对象,但在当年的美国,能装得起电话的往往都是较富裕阶层、持保守立场的共和党选民,而支持罗斯福的广大工人群体基本被排除在调查范围之外,由此在样本上造成了显著偏差。

SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型的更多相关文章

  1. 如何在R语言中使用Logistic回归模型

    在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或 ...

  2. SPSS数据分析—配对Logistic回归模型

    Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配 ...

  3. SPSS数据分析—多分类Logistic回归模型

    前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型. 多分类Logistic回归模型又分为有序多分类Logi ...

  4. SPSS分析技术:多元方差分析

    SPSS分析技术:多元方差分析 下面要介绍多元方差分析的内容,多元方差分析是研究多个自变量与多个因变量相互关系的一种统计理论方法,又称多变量分析.多元方差分析实质上是单因变量方差分析(包括单因素和多因 ...

  5. SPSS数据分析—二分类Logistic回归模型

    对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能 ...

  6. logistic回归模型

    一.模型简介 线性回归默认因变量为连续变量,而实际分析中,有时候会遇到因变量为分类变量的情况,例如阴性阳性.性别.血型等.此时如果还使用前面介绍的线性回归模型进行拟合的话,会出现问题,以二分类变量为例 ...

  7. 二分类Logistic回归模型

    Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型.这里只讲二分类. 对于二分类的Logistic回归,因变量y只有“是.否”两个取值,记为1和0.这种值为0/1的二值品质型变量 ...

  8. 机器学习笔记(三)Logistic回归模型

    Logistic回归模型 1. 模型简介: 线性回归往往并不能很好地解决分类问题,所以我们引出Logistic回归算法,算法的输出值或者说预测值一直介于0和1,虽然算法的名字有“回归”二字,但实际上L ...

  9. SPSS分析技术:二阶聚类分析;为什么出现大学生“裸贷”业务,因为放贷者知道贷款者还不起

    SPSS分析技术:二阶聚类分析:为什么出现大学生"裸贷"业务,因为放贷者知道贷款者还不起 今天将介绍一种智能聚类法,二阶聚类法,在开始介绍之前,先解答很多人在后台提出的一个疑问:那 ...

随机推荐

  1. JZOJ100048 【NOIP2017提高A组模拟7.14】紧急撤离

    题目 题目大意 给你一个01矩阵,每次询问从一个点是否可以走到另一个点. 每次走只能往右或者往下. 思考历程 这题啊,我想的时候真的是脑洞大开-- 首先,我一眼看下去,既然要询问是否联通,那么能不能求 ...

  2. c++设计模式:模板模式

    模板模式和策略模式的区别: 模板方法模式的主要思想:定义一个算法流程,将一些特定步骤的具体实现.延迟到子类.使得可以在不改变算法流程的情况下,通过不同的子类.来实现“定制”流程中的特定的步骤. 策略模 ...

  3. Vue 本地代理 纯前端技术解决跨域

    vue-axios获取数据很多小伙伴都会使用,但如果前后端分离且后台没设置跨域许可,那要怎样才能解决跨域问题? 常用方法有几种: 通过jsonp跨域 通过修改document.domain来跨子域 使 ...

  4. Entity Framework底层操作封装V2版本号(5)

    这个框架到如今最大的变化立即就要出现了,哪就是对缓存的使用.由于系统常常要去读取数据库数据.可是大家知道.数据库的处理能力是有限的,所以对于一些数据量不大,可是又 须要常常去读取的功能来说.更好的方法 ...

  5. Hadoop生态系统概况(转)图文并茂说的不错

    Hadoop是一个能够对大量数据进行分布式处理的软件框架.具有可靠.高效.可伸缩的特点. Hadoop的核心是HDFS和Mapreduce,hadoop2.0还包括YARN. 下图为hadoop的生态 ...

  6. Pandas绘图不支持中文解决方案

    参考博客:https://blog.csdn.net/weixin_42057852/article/details/80840215

  7. Winform 分页

    1.图列展示 2.分页控件代码 Paging.Designer.cs partial class Paging { /// <summary> /// 必需的设计器变量. /// < ...

  8. CF 500B New Year Permutation

    传送门 题目大意 给你一个数列,再给你一个矩阵,矩阵的(i,j)如果为1就表示可以将i,j位置上的数交换,问任意交换之后使原数列字典序最小并输出. 解题思路 因为如果i与j能交换,j与k能交换,那么i ...

  9. TZ_16ES6学习总结

    1.块级作用域的引入 在ES6之前,js只有全局作用域和函数作用域,ES6中let关键字为其引入了块级作用域. { var a = 5; let b = 6; } console.log(a); // ...

  10. TZ_09_自定义Spring-security

    1.Spring Security 的前身是 Acegi Security ,是 Spring 项目组中用来提供安全认证服务的框架 2.安全包括两个主要操作. “认证”,是为用户建立一个他所声明的主体 ...