正解:点分治

解题报告:

传送门$QwQ$

昂先不考虑关于那个长度的限制考虑怎么做?

就开个桶,记录所有边的取值,每次加入边的时候查下是否可行就成$QwQ$

然后现在考虑加入这个长度的限制?就考虑把这个桶,本来是个$bool$数组记录可行嘛,现在就改成$int$数组记录最小长度

然后就做完辣,,,?$QwQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define int long long
#define gc getchar()
#define t(i) edge[i].to
#define w(i) edge[i].wei
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define e(i,x) for(ri i=head[x];i;i=edge[i].nxt) const int N=+,M=+,inf=1e9;
int n,K,head[N],ed_cnt,mxsz[N],sum,sz[N],rt,as,cnt,dis1[N],dis2[N],stp[M];
bool vis[N];
struct ed{int to,nxt,wei;}edge[N<<]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void ad(ri x,ri y,ri z){edge[++ed_cnt]=(ed){x,head[y],z};head[y]=ed_cnt;}
void dfs(ri x,ri fa)
{
sz[x]=;mxsz[x]=;
e(i,x)if(t(i)^fa && !vis[t(i)])dfs(t(i),x),sz[x]+=sz[t(i)],mxsz[x]=max(mxsz[x],sz[t(i)]);
mxsz[x]=max(mxsz[x],sum-sz[x]);if(mxsz[x]<mxsz[rt])rt=x;
}
void dfs2(ri x,ri fa,ri d1,ri d2)
{if(d1>K)return;dis1[++cnt]=d1,dis2[cnt]=d2;e(i,x)if(!vis[t(i)] && t(i)^fa)dfs2(t(i),x,d1+w(i),d2+);}
il void cal(ri x)
{
stp[]=;cnt=;
e(i,x)
{
if(!vis[t(i)])
{
ri tmp=cnt;dfs2(t(i),x,w(i),);
rp(j,tmp+,cnt){as=min(as,dis2[j]+stp[K-dis1[j]]);/*printf("x=%d to=%d dis1j=%d dis2j=%d stp=%d len=%d\n",x,t(i),dis1[j],dis2[j],stp[K-dis1[j]],K-dis1[j]);*/}
rp(j,tmp+,cnt)stp[dis1[j]]=min(stp[dis1[j]],dis2[j]);
}
}
//printf(" x=%d as=%d\n",x,as);
rp(i,,cnt)stp[dis1[i]]=stp[K+];
}
void solv(ri x){/*printf("rt=%d\n",x);*/vis[x]=;cal(x);e(i,x)if(!vis[t(i)])sum=sz[x],rt=,dfs(t(i),x),solv(rt);} signed main()
{
//freopen("4149.in","r",stdin);freopen("4149.out","w",stdout);
n=read();K=read();rp(i,,n-){ri x=read()+,y=read()+,z=read();ad(x,y,z);ad(y,x,z);}
mxsz[rt]=sum=n;dfs(,);memset(stp,,sizeof(stp));as=stp[];solv(rt);printf("%lld\n",as==stp[K+]?-:as);
return ;
}

洛谷$P4149\ [IOI2011]\ Race$ 点分治的更多相关文章

  1. [洛谷P4149][IOI2011]Race

    题目大意:给一棵树,每条边有边权.求一条简单路径,权值和等于$K$,且边的数量最小. 题解:点分治,考虑到这是最小值,不满足可减性,于是点分中的更新答案的地方计算重复的部分要做更改,就用一个数组记录前 ...

  2. 模板—点分治B(合并子树)(洛谷P4149 [IOI2011]Race)

    洛谷P4149 [IOI2011]Race 点分治作用(目前只知道这个): 求一棵树上满足条件的节点二元组(u,v)个数,比较典型的是求dis(u,v)(dis表示距离)满足条件的(u,v)个数. 算 ...

  3. 洛谷 P4149 [IOI2011]Race-树分治(点分治,不容斥版)+读入挂-树上求一条路径,权值和等于 K,且边的数量最小

    P4149 [IOI2011]Race 题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK,且边的数量最小. 输入格式 第一行包含两个整数 n, Kn,K. 接下来 n - 1n−1 行 ...

  4. 洛谷 4149 [IOI2011]Race——点分治

    题目:https://www.luogu.org/problemnew/show/P4149 第一道点分治! 点分治大约是每次找重心,以重心为根做一遍树形dp:然后对于该根的每个孩子,递归下去.递归之 ...

  5. 洛谷P4149 [IOI2011]Race(点分治)

    题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK ,且边的数量最小. 输入输出格式 输入格式:   第一行:两个整数 n,kn,k . 第二至 nn 行:每行三个整数,表示一条无向边的 ...

  6. P4149 [IOI2011]Race

    对于这道题,明显是点分治,权值等于k,可以用桶统计树上路径(但注意要清空); 对于每颗子树,先与之前的子树拼k,再更新桶,维护t["len"]最小边数; #include < ...

  7. P4149 [IOI2011]Race 点分治

    思路: 点分治 提交:5次 题解: 刚开始用排序+双指针写的,但是调了一晚上,总是有两个点过不了,第二天发现原因是排序时的\(cmp\)函数写错了:如果对于路径长度相同的,我们从小往大按边数排序,当双 ...

  8. LUOGU P4149 [IOI2011]Race

    题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KKK ,且边的数量最小. 输入输出格式 输入格式: 第一行:两个整数 n,kn,kn,k . 第二至 nnn 行:每行三个整数,表示一条无 ...

  9. 洛谷 P4149 [ IOI 2011 ] Race —— 点分治

    题目:https://www.luogu.org/problemnew/show/P4149 仍然是点分治: 不过因为是取 min ,所以不能用容斥,那么子树之间就必须分开算,记录桶时注意这个: 每次 ...

随机推荐

  1. Pytorch使用tensorboardX网络结构可视化。超详细!!!

    https://www.jianshu.com/p/46eb3004beca 1 引言 我们都知道tensorflow框架可以使用tensorboard这一高级的可视化的工具,为了使用tensorbo ...

  2. @loj - 2478@「九省联考 2018」林克卡特树

    目录 @description@ @solution@ @part - 1@ @part - 2@ @accepted code@ @details@ @description@ 小 L 最近沉迷于塞 ...

  3. poj 1716 Integer Intervals(差分约束)

    1716 -- Integer Intervals 跟之前个人赛的一道二分加差分约束差不多,也是求满足条件的最小值. 题意是,给出若干区间,需要找出最少的元素个数,使得每个区间至少包含两个这里的元素. ...

  4. SuperSocket 日志接口

    SuperSocket的日志功能非常简单,你几乎可以在任何地方都能记录日志. AppServer 和 AppSession 都有Logger属性, 你可以直接用它来记录日志. 以下代码演示了日志接口的 ...

  5. JavaScript跨域问题

    通过实现Ajax通信的主要限制,来源于跨域安全策略.默认情况下,XHR对象只能访问与包含它的页面位于同一个域中的资源.这种安全策略可以预防某些恶意行为.但是,实现合理的跨域请求对于开发某些浏览器应用程 ...

  6. H3C 虚拟模板方式配置PPP MP

  7. css3图片展示方式

    <view class='img_block' id='mjltest'> <view class='text_view'> <view class='{{cell_cl ...

  8. Spring Cloud探路(二) Erueka客户端的建立

    接上篇 1.pom.xml与上篇一致 2.新建包及Application启动类 @Configuration @ComponentScan @EnableEurekaClient @EnableAut ...

  9. linux 创建你的 /proc 文件

    一旦你有一个定义好的 read_proc 函数, 你应当连接它到 /proc 层次中的一个入口项. 使用一个 creat_proc_read_entry 调用: struct proc_dir_ent ...

  10. 深入理解Jvm--Java静态分配和动态分配完全解析

    jvm中分配Dispatch的概念 分派是针对方法而言的,指的是方法确定的过程,通常发生在方法调用的过程中.分派根据方法选择的发生时机可以分为静态分派和动态分派,其中对于动态分派,根据宗量种数又可以分 ...