题意:给你一棵树,你选择删掉一条边,再加上一条边(也要保证为树),问最后树上的节点能够两两完美匹配的加删边方案数?

n<=5e5.

标程:

 #include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
int read()
{
int x=;char ch=getchar();
while (ch<''||ch>'') ch=getchar();
while (''<=ch&&ch<='') x=(x<<)+(x<<)+ch-'',ch=getchar();
return x;
}
const int N=;
typedef long long ll;
int size[N],n,u,v;
ll ans;
vector<int> vec[N];
struct node{int a[][];}f[N],g[N];
vector<node> pre[N];
void init(node &x){x.a[][]=;x.a[][]=x.a[][]=x.a[][]=;}
node modi(node x,node y)
{
node c;
c.a[][]=x.a[][]*y.a[][];
c.a[][]=x.a[][]*y.a[][]+x.a[][]*y.a[][];
c.a[][]=x.a[][]*y.a[][]+x.a[][]*(y.a[][]+y.a[][]);
c.a[][]=x.a[][]*y.a[][]+x.a[][]*(y.a[][]+y.a[][])+x.a[][]*y.a[][]+x.a[][]*y.a[][];
return c;
}
node merge(node x,node y)
{
node c;
c.a[][]=x.a[][]*y.a[][];
c.a[][]=x.a[][]*y.a[][]+x.a[][]*y.a[][];
c.a[][]=x.a[][]*y.a[][]+x.a[][]*y.a[][];
c.a[][]=x.a[][]*y.a[][]+x.a[][]*y.a[][]+x.a[][]*y.a[][]+x.a[][]*y.a[][];
return c;
}
void dp1(int x,int fa)
{
size[x]=;init(f[x]);
if (fa!=-) vec[x].erase(find(vec[x].begin(),vec[x].end(),fa));//将fa删去,方便前后缀的处理
for (int i=;i<vec[x].size();i++)
{
int v=vec[x][i]; //注意内部定义
dp1(v,x);size[x]+=size[v];
f[x]=modi(f[x],f[v]);
}
}
void dp2(int x,int fa)
{
node cur;init(cur);
if (fa>) pre[x].push_back(modi(cur,g[x]));else pre[x].push_back(cur);
for (int i=;i<vec[x].size();i++)
pre[x].push_back(modi(pre[x].back(),f[vec[x][i]]));
for (int i=vec[x].size()-;i>=;i--)
{
int v=vec[x][i];
g[v]=merge(pre[x][i],cur);cur=modi(cur,f[v]);
dp2(v,x);
}
}
int main()
{
n=read();if (n&) return puts(""),;
for (int i=;i<n;i++) u=read(),v=read(),vec[u].push_back(v),vec[v].push_back(u);
dp1(,-);dp2(,-);
for (int i=;i<=n;i++)
if (f[i].a[][]&&g[i].a[][]) ans+=(ll)size[i]*(n-size[i]);
else ans+=(ll)(f[i].a[][]+f[i].a[][])*(g[i].a[][]+g[i].a[][]);
printf("%lld\n",ans);
return ;
}

易错点:1.转移式子要认真推。

2.注意函数内部定义变量。

3.将fa在vector中删去,方便前后缀寻址的对应。

题解:dp

把一条边删掉,树就分成了两个子树。要么各自匹配(这样怎么连都可以),要么连一条边后边的端点匹配,也就是两个子树在没有连边前各有一个点没有匹配。

f[i][0/1][0/1]表示以i为根的子树,根是否被匹配,子树中是否恰有一个点未被匹配的未匹配点的选法数。

g表示i为根的子树外的部分的答案(以fa[i]为根)。正反dp两遍后统计答案即可。

CF891D Sloth的更多相关文章

  1. sloth——算法工程师标注数据的福音

    一般算法工程师做标注,都要先开发个标注工具,无非下面几个选项: 1.mfc,C#,优点是交互界面友好,开发难度适中,缺点是没法跨平台 2.matlab,优点是可以跨平台,开发难度非常低,缺点是速度慢. ...

  2. Seven Deadly Sins: Gluttony, Greed, Sloth, Wrath, Pride, Lust, and Envy.

    Seven Deadly Sins: Gluttony, Greed, Sloth, Wrath, Pride, Lust, and Envy.七宗罪:暴食.贪婪.懒惰.暴怒.傲慢.色欲.妒忌.

  3. Codeforces 891D - Sloth(换根 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 换根 dp 好题. 为啥没人做/yiw 首先 \(n\) 为奇数时答案显然为 \(0\),证明显然.接下来我们着重探讨 \(n\) 是偶数 ...

  4. Java Script 编码规范【转】

    Java Script 编码规范 以下文档大多来自: Google JavaScript 编码规范指南 Idiomatic 风格 参考规范 ECMAScript 5.1 注解版 EcmaScript ...

  5. pickle序列化

    通过pickle来序列化: # -*- coding: utf-8 -*- import pickle #-------------------序列化--------------------- zoo ...

  6. nullcon HackIM 2016 -- Programming Question 5

    Dont blink your Eyes, you might miss it. But the fatigue and exhaustion rules out any logic, any wil ...

  7. C++ Primer Plus读书笔记

    第五章 循环和关系表达式 1. 2.类别别名: (1)   #define FLOAT_POINTER float * FLOAT_POINTER pa, pb; 预处理器置换将该声明转换成  flo ...

  8. Deep Learning in a Nutshell: History and Training

    Deep Learning in a Nutshell: History and Training This series of blog posts aims to provide an intui ...

  9. javascript 函数式编程

    编程范式 编程范式是一个由思考问题以及实现问题愿景的工具组成的框架.很多现代语言都是聚范式(或者说多重范式): 他们支持很多不同的编程范式,比如面向对象,元程序设计,泛函,面向过程,等等. 函数式编程 ...

随机推荐

  1. Comparison of FastText and Word2Vec

    Comparison of FastText and Word2Vec   Facebook Research open sourced a great project yesterday - fas ...

  2. HDU1501-Zipper-字符串的dfs

    Given three strings, you are to determine whether the third string can be formed by combining the ch ...

  3. 使用反射机制,获取 ArrayList 的容量大小

    本文所有说明及代码示例都是基于JDK 1.8  ArrayList 提供size()方法获取当前集合的元素数量,但无法知道当前集合的容量,翻看 ArrayList 的源代码,可以看到字段 elemen ...

  4. D3.js坐标轴的绘制方法、添加坐标轴的刻度和各比例尺的坐标轴(V3版本)

    坐标轴(Axis)   坐标轴(Axis)在很多图表中都可见到,例如柱形图.折线图.散点图等.坐标轴由一组线段和文字组成,坐标轴上的点由一个坐标值确定.但是,如果使用SVG的直线和文字一笔一画的绘制坐 ...

  5. Ubuntu 最简单的方式安装chrome

    1.指定安装目录如下: cd opt/ 2.下载包: sudo wget https://dl.google.com/linux/direct/google-chrome-stable_current ...

  6. arm-linux-objdump 的使用

    1. 查看静态库或.o 文件的组成文件 [arm@localhost gcc]$ arm­linux­objdump ­a libhello.a 2. 查看静态库或.o 文件的络组成部分的头部分 [a ...

  7. vim 命令行模式 操作指令

      复制n行: nyy 粘贴:p 剪切(删除)n行: ndd 剪切 ( 删除 ) n个字符:nx 移动光标到第一行 : gg 移动光标到最后一行 : G 设置格式  :gg=G 返回上一次操作前(撤销 ...

  8. Asp.net MVC使用EasyNetQ操作RabbitMQ

    Demo下载地址:https://download.csdn.net/download/u010312811/11259742 .Net下操作RabbitMQ最常用的SDK是RabbitMQ.Clie ...

  9. 【学术篇】SPOJ COT 树上主席树

    这是学完主席树去写的第二道题_(:з」∠)_ 之前用树上莫队水过了COT2... 其实COT也可以用树上莫队水过去不过好像复杂度要带个log还是怎么样可能会被卡常数.. 那就orz主席吧.... 写了 ...

  10. python库之xgboost

    一.安装 https://www.zhihu.com/question/46377605