C. Journey
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.

Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.

Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link https://en.wikipedia.org/wiki/Expected_value.

Input

The first line contains a single integer n (1 ≤ n ≤ 100000) — number of cities.

Then n - 1 lines follow. The i-th line of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — the cities connected by the i-th road.

It is guaranteed that one can reach any city from any other by the roads.

Output

Print a number — the expected length of their journey. The journey starts in the city 1.

Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
Input
4
1 2
1 3
2 4
Output
1.500000000000000
Input
5
1 2
1 3
3 4
2 5
Output
2.000000000000000
Note

In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.

In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.

题目大意:

  从第一个城市开始出发,只能走和他相连通的地方,并且走过的路不能再走,走的每条路的边的权值都为1,问最终走的路的期望是多少?并且此题中的图是不连通的。

运用dfs 去搜一遍树 , 当搜到叶子节点则返回 ,对一个点的期望如何计算, 1 + 该点所有孩子的期望和 / 孩子总数 。

所以我们计算单个节点概率的公式就是
if(该节点非叶子结点) p =1.0+sum (子节点的概率之和)/ k(子节点个数)


代码示例 :
const int eps = 1e5+5;
const double pi = acos(-1.0);
const int inf = 1<<29;
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define ll long long int n;
vector<int>ve[eps];
double f[eps]; void dfs(int x, int fa){
double p = 0; for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i];
if (to == fa) continue;
f[x]++;
dfs(to, x);
int len = ve[to].size(); if (len == 0) p = 0;
else p = f[to]/(1.0*len);
f[x] += p;
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n;
int a, b; for(int i = 1; i < n; i++){
scanf("%d%d", &a, &b);
ve[a].push_back(b);
ve[b].push_back(a);
}
dfs(1, 1);
printf("%.15lf\n", f[1]/ve[1].size());
return 0;
}

思路二 :

  因为题目只是让算了一个期望,那么我就可以去计算每个点的期望然后往上累加。

const int eps = 1e5+5;
const double pi = acos(-1.0);
const int inf = 1<<29;
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define ll long long int n;
vector<int>ve[eps];
double f[eps]; void dfs(int x, int fa){
for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i];
if (to == fa) continue; double p = 0;
f[x]++;
dfs(to, x);
int len = ve[to].size();
if (len == 1) p = 0;
else p = f[to]/(len-1);
f[x] += p;
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n;
int a, b;
if (n == 1) {printf("0\n"); return 0;}
for(int i = 1; i < n; i++){
scanf("%d%d", &a, &b);
ve[a].push_back(b);
ve[b].push_back(a);
}
dfs(1, 1);
printf("%.15lf\n", f[1]/(ve[1].size()));
return 0;
}

dfs - 概率的更多相关文章

  1. UVA 11181 dfs 概率

    N friends go to the local super market together. The probability of their buying something from them ...

  2. CodeForces - 476B -Dreamoon and WiFi(DFS+概率思维)

    Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands throug ...

  3. Linux 集群

    html,body { } .CodeMirror { height: auto } .CodeMirror-scroll { } .CodeMirror-lines { padding: 4px 0 ...

  4. noip2017考前整理(未完)

    快考试了,把我以前写过的题回顾一下.Noip2007 树网的核:floyd,推出性质,暴力.Noip2008 笨小猴:模拟Noip2008 火柴棒等式:枚举Noip2008 传纸条:棋盘dpNoip2 ...

  5. 【备考06组01号】第四届蓝桥杯JAVA组A组国赛题解

    1.填算式 (1)题目描述     请看下面的算式:     (ABCD - EFGH) * XY = 900     每个字母代表一个0~9的数字,不同字母代表不同数字,首位不能为0.     比如 ...

  6. D. Puzzles(Codeforces Round #362 (Div. 2))

    D. Puzzles Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 ...

  7. BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)

    题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃 ...

  8. Java实现 LeetCode 688 “马”在棋盘上的概率(DFS+记忆化搜索)

    688. "马"在棋盘上的概率 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有 ...

  9. UVA1637Double Patience(概率 + 记忆化搜索)

    训练指南P327 题意:36张牌分成9堆, 每堆4张牌.每次拿走某两堆顶部的牌,但需要点数相同.如果出现多种拿法则等概率的随机拿. 如果最后拿完所有的牌则游戏成功,求成功的概率. 开个9维数组表示每一 ...

随机推荐

  1. 常见DOS操作

    D: 去往D盘 cd.. 返回上一级目录 cd 文件名 目录切换到该文件名(子目录)下 cd \ 直接回根目录 dir 当前根目录下的文件目录 dir /s 所有目录

  2. 2019-11-17-dotnet-core-使用-GBK-编码

    title author date CreateTime categories dotnet core 使用 GBK 编码 lindexi 2019-11-17 16:36:27 +0800 2019 ...

  3. SPOJ - PHRASES Relevant Phrases of Annihilation (后缀数组)

    You are the King of Byteland. Your agents have just intercepted a batch of encrypted enemy messages ...

  4. Channel 9视频整理【4】

    Eric ShangKuan 目前服務於台灣微軟,擔任技術傳教士 (Technical Evangelist) 一職,網路上常用的 ID 為 ericsk,對於各項開發技術如:Web.Mobile.A ...

  5. 有限状态机FSM和层次状态机HSM

    前言 就单片机而言,程序可以分为两类:带操作系统的程序和前后台程序:前后台程序从架构上又分为顺序机和状态机. 广义地说, 任何一个程序都是一个状态机, 因为它总是要记住一些状态, 然后根据输入进行输出 ...

  6. web.config修改文件修改上传大小

    老是要修改上传文件大小的限制,先记在这里. <httpRuntime maxRequestLength= "1048576 " //最大长度 executionTimeout ...

  7. npm安装cnpm

    获取npm缓存路径: npm config get cache 离线安装 npm install --cache ./npm-cache --optional --cache-min 99999999 ...

  8. 重置Rhapsody超级管理员administrator的密码

    Rhapsody的安装信息说明 rhapsody 默认初始安装的用户名为 Administrator 密码为 rhapsody 配置文件rhapsody.properties位于位于{安装目录}\Rh ...

  9. 记录我的 python 学习历程-Day11 两个被忽视的坑、补充知识点、函数名的应用、新版格式化输出、迭代器

    补充知识点 函数形参中默认参数的陷阱 针对不可变数据类型,它是没有陷阱的 def func(name, sex='男'): print(name) print(sex) func('Dylan') # ...

  10. 使用easyExcel遇到的坑

    最近有个功能,用easyExcel代替poi ,这个确实方便了不少,但是使用easyExcel也踩到了很多坑,在这里记录下easyExcel存在的问题,希望阅读这篇文档的人,可以更好的避免这些. 1. ...