dfs - 概率
2 seconds
256 megabytes
standard input
standard output
There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.
Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.
Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link https://en.wikipedia.org/wiki/Expected_value.
The first line contains a single integer n (1 ≤ n ≤ 100000) — number of cities.
Then n - 1 lines follow. The i-th line of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — the cities connected by the i-th road.
It is guaranteed that one can reach any city from any other by the roads.
Print a number — the expected length of their journey. The journey starts in the city 1.
Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if
.
4
1 2
1 3
2 4
1.500000000000000
5
1 2
1 3
3 4
2 5
2.000000000000000
In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.
In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
题目大意:
从第一个城市开始出发,只能走和他相连通的地方,并且走过的路不能再走,走的每条路的边的权值都为1,问最终走的路的期望是多少?并且此题中的图是不连通的。
运用dfs 去搜一遍树 , 当搜到叶子节点则返回 ,对一个点的期望如何计算, 1 + 该点所有孩子的期望和 / 孩子总数 。
所以我们计算单个节点概率的公式就是
if(该节点非叶子结点) p =1.0+sum (子节点的概率之和)/ k(子节点个数)
代码示例 :
const int eps = 1e5+5;
const double pi = acos(-1.0);
const int inf = 1<<29;
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define ll long long int n;
vector<int>ve[eps];
double f[eps]; void dfs(int x, int fa){
double p = 0; for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i];
if (to == fa) continue;
f[x]++;
dfs(to, x);
int len = ve[to].size(); if (len == 0) p = 0;
else p = f[to]/(1.0*len);
f[x] += p;
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n;
int a, b; for(int i = 1; i < n; i++){
scanf("%d%d", &a, &b);
ve[a].push_back(b);
ve[b].push_back(a);
}
dfs(1, 1);
printf("%.15lf\n", f[1]/ve[1].size());
return 0;
}
思路二 :
因为题目只是让算了一个期望,那么我就可以去计算每个点的期望然后往上累加。
const int eps = 1e5+5;
const double pi = acos(-1.0);
const int inf = 1<<29;
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define ll long long int n;
vector<int>ve[eps];
double f[eps]; void dfs(int x, int fa){
for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i];
if (to == fa) continue; double p = 0;
f[x]++;
dfs(to, x);
int len = ve[to].size();
if (len == 1) p = 0;
else p = f[to]/(len-1);
f[x] += p;
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n;
int a, b;
if (n == 1) {printf("0\n"); return 0;}
for(int i = 1; i < n; i++){
scanf("%d%d", &a, &b);
ve[a].push_back(b);
ve[b].push_back(a);
}
dfs(1, 1);
printf("%.15lf\n", f[1]/(ve[1].size()));
return 0;
}
dfs - 概率的更多相关文章
- UVA 11181 dfs 概率
N friends go to the local super market together. The probability of their buying something from them ...
- CodeForces - 476B -Dreamoon and WiFi(DFS+概率思维)
Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands throug ...
- Linux 集群
html,body { } .CodeMirror { height: auto } .CodeMirror-scroll { } .CodeMirror-lines { padding: 4px 0 ...
- noip2017考前整理(未完)
快考试了,把我以前写过的题回顾一下.Noip2007 树网的核:floyd,推出性质,暴力.Noip2008 笨小猴:模拟Noip2008 火柴棒等式:枚举Noip2008 传纸条:棋盘dpNoip2 ...
- 【备考06组01号】第四届蓝桥杯JAVA组A组国赛题解
1.填算式 (1)题目描述 请看下面的算式: (ABCD - EFGH) * XY = 900 每个字母代表一个0~9的数字,不同字母代表不同数字,首位不能为0. 比如 ...
- D. Puzzles(Codeforces Round #362 (Div. 2))
D. Puzzles Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 ...
- BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)
题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃 ...
- Java实现 LeetCode 688 “马”在棋盘上的概率(DFS+记忆化搜索)
688. "马"在棋盘上的概率 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有 ...
- UVA1637Double Patience(概率 + 记忆化搜索)
训练指南P327 题意:36张牌分成9堆, 每堆4张牌.每次拿走某两堆顶部的牌,但需要点数相同.如果出现多种拿法则等概率的随机拿. 如果最后拿完所有的牌则游戏成功,求成功的概率. 开个9维数组表示每一 ...
随机推荐
- Codeforces Round #186 (Div. 2)
A. Ilya and Bank Account 模拟. B. Ilya and Queries 前缀和. C. Ilya and Matrix 考虑每个元素的贡献. 边长为\(2^n\)时,贡献为最 ...
- 如何理解springMVC?
springMVC 工作原理? 简单理解:客户端发送请求-->前端控制器接受客户端的请求DispathServelt-->找到处理器映射HandMapping-->找到处理器hand ...
- linux 使用 /proc 文件系统
/proc 文件系统是一个特殊的软件创建的文件系统, 内核用来输出消息到外界. /proc 下 的每个文件都绑到一个内核函数上, 当文件被读的时候即时产生文件内容. 我们已经见到 一些这样的文件起作用 ...
- IE显示 “Promise”未定义,vue项目兼容ie的两种方案
第一种方法: 直接在html中加入js链接: <script src = "https://cdn.polyfill.io/v2/polyfill.min.js">&l ...
- ZR提高失恋测3
ZR提高失恋测3 题目链接 (感觉这一场比以往的简单了一些) 估分 100 + 40 + 40 得分 100 + 60 + 40 ??? A 首先,我们能够想到一个比较简单的\(n^2\)做法, 枚举 ...
- 【codeforces 750C】New Year and Rating
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- ORACLE 两表关联更新三种方式
不多说了,我们来做实验吧. 创建如下表数据 select * from t1 ; select * from t2; 现需求:参照T2表,修改T1表,修改条件为两表的fname列内容一致. 方式1,u ...
- 2018 CCPC 吉林站 H Lovers
2018 CCPC 吉林站 H Lovers 传送门:https://www.spoj.com/problems/LIS2/en/ 题意: q次操作 1.将第l~r个数的左边和和右边都加上一个数d, ...
- 9.python入门
借鉴:https://www.cnblogs.com/wupeiqi/articles/5433925.html 一.HelloWorld print("HelloWorld") ...
- 怎么安装GUI
python安装easygui的过程中,下载的是0.97.安装的时候提示setuptools模块不存在.然后又去安装setuptools等等, 真麻烦.也没有成功.后来又下载了0.96的.才成功.下面 ...