Codeforces 题面传送门 & 洛谷题面传送门

一道 hot tea……听讲解时半懂不懂因为不知道题目意思,最后终究还是琢磨出来了(

首先注意到对于每个 \(a_i\),它具体是什么并不重要,我们只关心它的奇偶性,因为每次到达一个点后,如果后手有必胜策略,那么如果先手原地踏步,那么后手完全可以重复先手的操作直到 \(a_i\lt 2\) 为止,如果先手有必胜策略则反过来。由于每次走到一个点时候都要令 \(a_i\) 减 \(1\),因此我们可以直接令 \(a_i\leftarrow (a_i-1)\bmod 2\),这样游戏可以转化为,有 \(n\) 个 \([0,1]\) 中的整数 \(a_1,a_2,\cdots,a_n\),初始有一个棋子在 \(a_1\) 处,两个人轮流操作,每次一个人可以将棋子移到 \([i+1,\min(i+m,n)]\) 中的某个位置上,或者如果 \(a_i=1\),那么可以将棋子停留在原地并令 \(a_i=0\),不可以操作者输,问最终谁 win。

考虑暴力 \(dp\),\(dp_{i,j}\) 为当前棋子在 \(i\),\(a_i=j\) 的输赢状态,\(0\) 表示先手必输,\(1\) 表示先手必胜,那么显然 \(dp_{i,j}=1\) 当且仅当 \(\exists k\in[i+1,\min(i+m,n)]\) 满足 \(dp_{k,a_k}=0\),或者 \(j=1\) 且 \(dp_{i,0}=0\),否则 \(dp_{i,j}=0\)。

这样暴力做是 \(\mathcal O(nq)\) 的,考虑优化这个暴力,以下简记 \(dp_i=dp_{i,a_i}\),手玩一下样例就会发现一个 observation,那就是如果 \(a_i=1\),那么必有 \(dp_i=1\),因为如果 \([i+1,i+m]\) 中存在必输点那么移到那个必输点即可,否则 \(dp_{i,0}=0\),原地踏步即可。也就是说我们只用对于 \(a_i=0\) 检验 \([i+1,i+m]\) 中是否存在必输点即可。那么怎么检验呢?注意到这题的 \(m\) 令人出乎意料地小,\(2^m\) 不过 \(32\),并且涉及区间操作,因此可以想到线段树维护个什么东西。我们考虑对序列 \(a\) 建一棵线段树,线段树上每个区间 \([l,r]\) 开一个 \(2^m\) 的数组 \(to\),其中 \(to_S\) 表示如果 \(r+1,r+2,\cdots,r+m\) 是否为必胜点的状态为 \(S\)(\(0\):必输点;\(1\):必胜点),那么 \(l,l+1,\cdots,l+m-1\) 是否为必输点的状态是多少。这样显然可以在 \(\mathcal O(2^m)\) 的时间内合并 \([l,mid],[mid+1,r]\) 两个节点上的信息,初始状态:若 \(a_i=1\),那么 \(to_S=(2S+1)\&(2^m-1)\),其中 \(\&\) 为按位与,否则如果 \(S=2^m-1\) 那么 \(to_S=2^m-2\),否则 \(to_S\) 也等于 \((2S+1)\&(2^m-1)\)。最终求答案就将查询区间拆分一下、合并一下,如果查询得到的 \(to_0\) 的第一位为 \(0\),那么答案是 \(2\),否则答案是 \(1\)。至于那个区间加……显然如果 \(x\) 是偶数那么我们肯定不用关它,否则相当于翻转一个区间的 \(a\)(\(0\to 1,1\to 0\)),我们就记 \(b_i=2-a_i\),额外维护一下 \(b\) 数组的胜负情况,记作 \(to'\),翻转一整个区间时就直接交换它的 \(to\) 和 \(to'\) 即可,时间复杂度 \(2^mn\log n\),已经可以通过此题。

当然还有比正解更优秀的做法,其实只要加一个非常 simple 的 optimization 即可,注意到上面的做法中记录了一个二进制状态,费时费力,而其实我们只关心它第一个 \(0\) 的位置,因此我们可以将 \(to_i\) 的定义修改为:如果在 \(r\) 右边离 \(r\) 最近的必输点位置为 \(r+i\),那么在 \(l-1\) 右边离 \(l-1\) 最近的必输点位置为 \(l-1+to_i\),如果该位置 \(>l-1+m\) 那么 \(to_i=m+1\),显然在这种定义下我们可以 \(\mathcal O(m)\) 地合并序列信息,因此复杂度就降到了 \(mn\log n\)。

const int MAXN=2e5;
const int MAXM=5;
int n,m,qu;ll a[MAXN+5];
struct data{
int a[MAXM+3];
data(){memset(a,0,sizeof(a));}
friend data operator +(data x,data y){
data res;
for(int i=1;i<=m+1;i++) res.a[i]=y.a[x.a[i]];
return res;
}
};
struct node{int l,r,rev;data v[2];} s[MAXN*4+5];
void pushup(int k){
s[k].v[0]=s[k<<1|1].v[0]+s[k<<1].v[0];
s[k].v[1]=s[k<<1|1].v[1]+s[k<<1].v[1];
}
void build(int k,int l,int r){
s[k].l=l;s[k].r=r;
if(l==r){
for(int i=1;i<=m;i++){
s[k].v[a[l]].a[i]=s[k].v[a[l]^1].a[i]=i+1;
} s[k].v[a[l]].a[m+1]=1;s[k].v[a[l]^1].a[m+1]=m+1;return;
} int mid=l+r>>1;
build(k<<1,l,mid);build(k<<1|1,mid+1,r);
pushup(k);
}
void pushdown(int k){
if(s[k].rev){
swap(s[k<<1].v[0],s[k<<1].v[1]);s[k<<1].rev^=1;
swap(s[k<<1|1].v[0],s[k<<1|1].v[1]);s[k<<1|1].rev^=1;
s[k].rev=0;
}
}
void flip(int k,int l,int r){
if(l<=s[k].l&&s[k].r<=r) return swap(s[k].v[0],s[k].v[1]),s[k].rev^=1,void();
int mid=(pushdown(k),s[k].l+s[k].r>>1);
if(r<=mid) flip(k<<1,l,r);else if(l>mid) flip(k<<1|1,l,r);
else flip(k<<1,l,mid),flip(k<<1|1,mid+1,r);pushup(k);
}
data query(int k,int l,int r){
if(l<=s[k].l&&s[k].r<=r) return s[k].v[0];
int mid=(pushdown(k),s[k].l+s[k].r>>1);
if(r<=mid) return query(k<<1,l,r);
else if(l>mid) return query(k<<1|1,l,r);
else return query(k<<1|1,mid+1,r)+query(k<<1,l,mid);
}
int main(){
scanf("%d%d%d",&n,&m,&qu);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]),a[i]=(~a[i])&1;
build(1,1,n);
while(qu--){
int opt;scanf("%d",&opt);
if(opt==1){
int l,r;ll x;scanf("%d%d%lld",&l,&r,&x);
if(x&1) flip(1,l,r);
} else {
int l,r;scanf("%d%d",&l,&r);data t=query(1,l,r);
printf("%d\n",1+(t.a[m+1]==1));
}
}
return 0;
}

Codeforces 1076G - Array Game(博弈论+线段树)的更多相关文章

  1. Codeforces 1108E (Array and Segments) 线段树

    题意:给你一个长度为n的序列和m组区间操作,每组区间操作可以把区间[l, r]中的数字都-1,请选择一些操作(可以都不选),使得序列的最大值和最小值的差值尽量的大. 思路:容易发现如果最大值和最小值都 ...

  2. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  3. Codeforces 671C. Ultimate Weirdness of an Array(数论+线段树)

    看见$a_i\leq 200000$和gcd,就大概知道是要枚举gcd也就是答案了... 因为答案是max,可以发现我们很容易算出<=i的答案,但是很难求出单个i的答案,所以我们可以运用差分的思 ...

  4. codeforces 22E XOR on Segment 线段树

    题目链接: http://codeforces.com/problemset/problem/242/E E. XOR on Segment time limit per test 4 seconds ...

  5. Codeforces 588E. A Simple Task (线段树+计数排序思想)

    题目链接:http://codeforces.com/contest/558/problem/E 题意:有一串字符串,有两个操作:1操作是将l到r的字符串升序排序,0操作是降序排序. 题解:建立26棵 ...

  6. Codeforces Gym 100803G Flipping Parentheses 线段树+二分

    Flipping Parentheses 题目连接: http://codeforces.com/gym/100803/attachments Description A string consist ...

  7. Codeforces GYM 100114 D. Selection 线段树维护DP

    D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...

  8. Codeforces 444C DZY Loves Colors(线段树)

    题目大意:Codeforces 444C DZY Loves Colors 题目大意:两种操作,1是改动区间上l到r上面德值为x,2是询问l到r区间总的改动值. 解题思路:线段树模板题. #inclu ...

  9. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

随机推荐

  1. 配置pyenv环境

    git clone https://github.com/pyenv/pyenv.git ~/.pyenv echo 'export PYENV_ROOT="$HOME/.pyenv&quo ...

  2. 如何接入 K8s 持久化存储?K8s CSI 实现机制浅析

    作者 王成,腾讯云研发工程师,Kubernetes contributor,从事数据库产品容器化.资源管控等工作,关注 Kubernetes.Go.云原生领域. 概述 进入 K8s 的世界,会发现有很 ...

  3. Spring Authorization Server的使用

    Spring Authorization Server的使用 一.背景 二.前置知识 三.需求 四.核心代码编写 1.引入授权服务器依赖 2.创建授权服务器用户 3.创建授权服务器和客户端 五.测试 ...

  4. elasticsearch的索引操作

    1.创建索引(test_index) curl -XPUT "http://192.168.99.1:9200/test_index" 2.创建索引,指定分片和副本的数量 curl ...

  5. 热身训练1 Problem B. Harvest of Apples

    http://acm.hdu.edu.cn/showproblem.php?pid=6333 题意: 求 C(0,n)+C(1,n)+...+C(m,n) 分析: 这道题,我们令s(m,n) = C( ...

  6. 计算机网络之流量控制(停止-等待协议、滑动窗口、后退N帧协议GBN、选择重传协议SR)、滑动窗口、可靠传输机制

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/104908762 学习课程:<2019王道考研计算机网络> 学习目的 ...

  7. 公众号H5页面接入微信登录流程

    公众号H5页面接入微信登录流程 源码地址 https://gitee.com/szxio/h5_weixin 起步 首先创建一个项目,我们采用uni-app来作为我们的前端框架 环境安装 全局安装vu ...

  8. 用Python去除PDF水印

    今天介绍下用 Python 去除 PDF (图片)的水印.思路很简单,代码也很简洁. 首先来考虑 Python 如何去除图片的水印,然后再将思路复用到 PDF 上面. 这张图片是前几天整理<数据 ...

  9. cf13A Numbers(,,)

    题意: Little Petya likes numbers a lot. He found that number 123 in base 16 consists of two digits: th ...

  10. oracle 修改表空间名

    1.登录使用sys用户登录 sqlplus sys/ as sysdba 2.修改表空间名字 SQL> alter tablespace 旧表空间名 rename to 新表空间名; 表空间已更 ...