Codeforces 题面传送门 & 洛谷题面传送门

咦,题解搬运人竟是我?

一道很毒的计数题。

先转化下题意,每一次操作我们可以视作选择一种颜色并将其出现次数 \(+k\),之后将所有颜色的出现次数 \(-1\)。我们假设第 \(i\) 种颜色被操作了 \(c_i\) 次,那么一组 \(\{c_1,c_2,\cdots,c_k\}\) 符合条件当且仅当 \(\forall i,a_i+kc_i\ge\sum\limits_{i=1}^kc_i\)。我们所求即是符合这样的条件的 \(\{a_i-kc_i-\sum\limits_{i=1}^kc_i\}\) 的个数。

直接统计显然不行,因此考虑发掘一些性质。一个非常自然的猜想是,如果操作不能无限进行下去,那操作最多进行的轮数不会太多,大概就 \(\mathcal O(k)\) 级别的,因为如果存在一种操作序列满足 \(k\) 步之后仍然不会挂,那么我们一直重复这 \(k\) 次操作的过程中即可将游戏一直进行下去。因此从这个角度入手作文章。考虑对于一种颜色 \(i\),如果我们希望操作能够继续下去,那么必然有前 \(a_i+1+ck\) 次操作中必须至少有 \(c+1\) 次操作作用在这个颜色上,因此我们考虑将数轴上这些形如 \(a_i+1+ck(c\ge 0)\) 的位置打上 \(+1\) 标记,然后对整个数轴进行一遍前缀和,我们假设得到的前缀和数组为 \(s_i\),如果我们发现某个 \(s_i\) 大于 \(i\),那么我们显然没办法安排这 \(i\) 次操作符合限制,也就表明操作次数最多为 \(i-1\),break 掉即可。如果对于 \(i\in[1,k-1]\) 都不存在这样的情况则说明操作可以无限进行下去。

考虑怎样统计答案,首先是有限次操作的情况。需要注意到一个性质,那就是对于所有 \(x,y\in[1,k-1]\),如果 \(x\ne y\),那么所有操作 \(x\) 次后得到的序列肯定不同于操作 \(y\) 次后得到的序列,因为至少要 \(k\) 次操作可以将一个序列复原,而根据上面的推论,有限次操作的情况中操作次数的上界为 \(k-1\),因此我们考虑枚举操作次数 \(x\),那么我们考虑统计 \(x\) 次操作可以产生多少组不同的 \(\{c_1,c_2,\cdots,c_k\}\)。这个可以通过调用我们之前求得的前缀和数组 \(s_x\) 计算:有 \(s_x\) 次操作选择的颜色已经确定了,因此我们只能安排剩余 \(x-s_x\) 次操作选择的颜色,而这等价于 \(\sum\limits_{i=1}^kd_i=x-s_x\) 的非负整数解的组数,隔板法可算得方案数为 \(\dbinom{x-s_x+k-1}{k-1}\)。对于所有 \(x\) 计算一遍上式的值并将答案加起来即可。

接下来是无限次操作的情况。首先注意到一个性质,就是由于操作可以无限进行下去,对于任意 \(p\),如果一个序列 \(\{a'\}\) 可以通过 \(p\) 次操作得到,那序列 \(\{a'\}\) 也可以通过 \(p+k\) 次操作得到。但这个结论反过来不一定成立,因为可能存在 \(p\) 过小而导致某些颜色无法操作的情况。不过这个问题比较容易解决,如果 \(p>\max{a_i}\) 就不会存在步数过小而无法操作全部颜色的情况了。因此直接对 \(x\in[10^6+1,10^6+k]\) 重复一遍上面的过程即可。

时间复杂度 \(\mathcal O(\max\{a_i\}+k)\)。

const int MAXN=1e6;
const int MOD=998244353;
int n,a[MAXN+5],cnt[MAXN*2+5],fac[MAXN*3+5],ifac[MAXN*3+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int x,int y){
if(x<0||y<0||x<y) return 0;
return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;
}
int main(){
scanf("%d",&n);init_fac(MAXN*3);
int lim=n+MAXN,res=0;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
for(int j=a[i]+1;j<=lim;j+=n) cnt[j]++;
}
for(int i=1;i<=lim;i++){
cnt[i]+=cnt[i-1];
if(cnt[i]>i){lim=i-1;break;}
}
if(lim<=MAXN){
for(int i=0;i<=lim;i++) res=(res+binom(i-cnt[i]+n-1,n-1))%MOD;
} else {
for(int i=MAXN+1;i<=lim;i++) res=(res+binom(i-cnt[i]+n-1,n-1))%MOD;
}
printf("%d\n",res);
return 0;
}

Codeforces 1188E - Problem from Red Panda(找性质+组合数学)的更多相关文章

  1. Codeforces 1264F - Beautiful Fibonacci Problem(猜结论+找性质)

    Codeforces 题面传送门 & 洛谷题面传送门 一道名副其实(beautiful)的结论题. 首先看到这道设问方式我们可以很自然地想到套用斐波那契数列的恒等式,注意到这里涉及到 \(F_ ...

  2. Codeforces 1383C - String Transformation 2(找性质+状压 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 神奇的强迫症效应,一场只要 AC 了 A.B.D.E.F,就一定会把 C 补掉( 感觉这个 C 难度比 D 难度高啊-- 首先考虑对问题进 ...

  3. Codeforces 1067E - Random Forest Rank(找性质+树形 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 一道不知道能不能算上自己 AC 的 D1E(?) 挺有意思的结论题,结论倒是自己猜出来了,可根本不会证( 开始搬运题解 ing: 碰到这样 ...

  4. Codeforces 809C - Find a car(找性质)

    Codeforces 题目传送门 & 洛谷题目传送门 首先拿到这类题第一步肯定要分析题目给出的矩阵有什么性质.稍微打个表即可发现题目要求的矩形是一个分形.形式化地说,该矩形可以通过以下方式生成 ...

  5. Codeforces 1442D - Sum(找性质+分治+背包)

    Codeforces 题面传送门 & 洛谷题面传送门 智商掉线/ll 本来以为是个奇怪的反悔贪心,然后便一直往反悔贪心的方向想就没想出来,看了题解才发现是个 nb 结论题. Conclusio ...

  6. Atcoder Grand Contest 008 E - Next or Nextnext(乱搞+找性质)

    Atcoder 题面传送门 & 洛谷题面传送门 震惊,我竟然能独立切掉 AGC E 难度的思维题! hb:nb tea 一道 感觉此题就是找性质,找性质,再找性质( 首先看到排列有关的问题,我 ...

  7. Codeforces 1413F - Roads and Ramen(树的直径+找性质)

    Codeforces 题目传送门 & 洛谷题目传送门 其实是一道还算一般的题罢--大概是最近刷长链剖分,被某道长链剖分与直径结合的题爆踩之后就点开了这题. 本题的难点就在于看出一个性质:最长路 ...

  8. Codeforces 526G - Spiders Evil Plan(长链剖分+直径+找性质)

    Codeforces 题目传送门 & 洛谷题目传送门 %%%%% 这题也太神了吧 storz 57072 %%%%% 首先容易注意到我们选择的这 \(y\) 条路径的端点一定是叶子节点,否则我 ...

  9. Codeforces 698F - Coprime Permutation(找性质)

    Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这个 D1F 比某道 jxd 作业里的 D1F 质量高多了啊,为啥这场的 D 进了 jxd 作业而这道题没进/yun 首先这 ...

随机推荐

  1. xpath helper插件安装提示程序包无效

    参考链接:https://www.jianshu.com/p/b7d782ef81e0 刚学到爬虫,需要在Chrome浏览器安装xpath helper插件结果一直提示"程序包无效" ...

  2. LeetCode:BFS/DFS

    BFS/DFS 在树专题和回溯算法中其实已经涉及到了BFS和DFS算法,这里单独提出再进一步学习一下 BFS 广度优先遍历 Breadth-First-Search 这部分的内容也主要是学习了labu ...

  3. 灵光一闪!帮你使用Vue,搞定无法解决的“动态挂载”

    在一些特殊场景下,使用组件的时机无法确定,或者无法在Vue的template中确定要我们要使用的组件,这时就需要动态的挂载组件,或者使用运行时编译动态创建组件并挂载. 今天我们将带大家从实际项目出发, ...

  4. Alpha阶段初始任务分配

    项目 内容 这个作业属于哪个课程 2021春季软件工程(罗杰 任健) 这个作业的要求在哪里 团队项目-计划-Alpha阶段说明书 一.Alpha阶段总体规划 进行服务器相关部署 进行开发相关技术学习 ...

  5. 问题:两个对象值相同(x.equals(y) == true),但是可能存在hashCode不同吗?

    面试官的考察点 这道题仍然是考察JVM层面的基本知识,面试官认为,基本功扎实,才能写出健壮性和稳定性很高的代码. 涉及到的技术知识 (x.equals(y)==true),这段代码,看起来非常简单,但 ...

  6. 6.深入TiDB:乐观事务

    本文基于 TiDB release-5.1进行分析,需要用到 Go 1.16以后的版本 我的博客地址:: https://www.luozhiyun.com/archives/620 事务模型概述 由 ...

  7. 第01课 OpenGL窗口(1)

    教程的这一节在2000年一月彻底重写了一遍.将会教您如何设置一个 OpenGL窗口.它可以只是一个窗口或是全屏幕的.可以任意 大小.任意色彩深度.此处的代码很稳定且很强大,您可以在您所有的OpenGL ...

  8. oracle 归档日志:db_recovery_file_dest、log_archive_dest和log_archive_dest_n的区别和使用

    概念: db_recovery_file_dest:默认的指定闪回恢复区路径 log_archive_dest:指定归档文件存放的路径,所有归档路径必须是本地的,默认为''.log_archive_d ...

  9. 【接口】SpringBoot+接口开发(一)

    一.接口的简单介绍 1.什么是接口:接口及服务: 2.接口的分类:(1)系统的内部接口;(2)第三方的外部接口; 3.简述接口原理图: 4.接口协议:是指客户端跟服务器之间或者接口与接口间进行的通讯时 ...

  10. LeetCode 重排链表 OPPO笔试

    重排链表 几个关键点: 1. 双指针(快慢指针找中点)(用于反转后一部分) 2. 反转后一部分 (reverse函数) 3. 合并链表 合并的时候在笔试的时候想了一种比我之前想的简单的方法 从slow ...