Content

读入一个字符串 \(s\),让你用以下规则将字符串中的所有字符转换成数字:

  • 先将这个字符的 \(\texttt{ASCII}\) 码的 \(8\) 位 \(2\) 进制数反转,再将这个数转化为十进制数,记为 \(x\)。例如 \(\texttt{H}\) 的 \(\texttt{ASCII}\) 码是 \(72=(01001000)_2\),将其反转得 \((00010010)_2=18\)。
  • 取出上一步的反转结果 \(res\)(第一步 \(res=0\)),求出最终的数字 \(a=(res-x)\mod256\)。例如,\(\texttt{H}\) 作为第一个字符出现在字符串中,那么它的最终转换的数字就是 \((0-18)\mod256=238\)。

数据范围:\(1\leqslant|s|\leqslant100\),各个字符的 \(\texttt{ASCII}\) 码在 \(32\) 到 \(126\) 之间(包含 \(32\) 和 \(126\))。

Solution

就是一道模拟题目。

首先得出字符的 \(\texttt{ASCII}\) 码以后我们把它转换为一个 \(8\) 位二进制的数,再反转。这个可以用一个数组来保存。

我们再调出上一次的结果(可以用一个变量保存,初始值为 \(0\)),然后求出来结果。注意,如果是负数,那么先要把它给加上 \(256\),使其变为正数,然后再取模。

Code

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
using namespace std; string s;
int pre; int main() {
getline(cin, s); //考虑到可能读入空格,用getline读入字符串
pre = 0;
for(int i = 0; i < s.size(); ++i) {
int x = (int)s[i], num[17] = {0}, newx = 0;
for(int j = 7; j >= 0; --j) if(x >= (int)pow(2, j)) num[j] = 1, x -= pow(2, j);
for(int j = 0; j <= 7; ++j) newx += num[j] * pow(2, 7 - j);
printf("%d\n", (pre - newx + 256) % 256);
pre = newx;
}
}

CF132A Turing Tape 题解的更多相关文章

  1. HDU3333 Turing Tree 树状数组+离线处理

    Turing Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. UVa 10878 Decode the tape

    题目很简单,代码也很短.第一遍做的时候,我居然二乎乎的把input里面的小框框忽略掉了,所以WA了一次. 每一行代表一个二进制的ASCII码,'o'代表1,空格代表0,中间的小黑点忽略. 我直接把一行 ...

  3. hdu 3333 Turing Tree 图灵树(线段树 + 二分离散)

    http://acm.hdu.edu.cn/showproblem.php?pid=3333 Turing Tree Time Limit: 6000/3000 MS (Java/Others)    ...

  4. 第七届河南省赛F.Turing equation(模拟)

    10399: F.Turing equation Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 151  Solved: 84 [Submit][St ...

  5. 算法(第四版)C# 习题题解——2.1

    写在前面 整个项目都托管在了 Github 上:https://github.com/ikesnowy/Algorithms-4th-Edition-in-Csharp 这一节内容可能会用到的库文件有 ...

  6. HDU 3333 Turing Tree 线段树+离线处理

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3333 Turing Tree Time Limit: 6000/3000 MS (Java/Othe ...

  7. 算法(第四版)C#题解——2.1

    算法(第四版)C#题解——2.1   写在前面 整个项目都托管在了 Github 上:https://github.com/ikesnowy/Algorithms-4th-Edition-in-Csh ...

  8. Codeforces Global Round 1 (A-E题解)

    Codeforces Global Round 1 题目链接:https://codeforces.com/contest/1110 A. Parity 题意: 给出{ak},b,k,判断a1*b^( ...

  9. Neural Turing Machines-NTM系列(一)简述

    Neural Turing Machines-NTM系列(一)简述 NTM是一种使用Neural Network为基础来实现传统图灵机的理论计算模型.利用该模型.能够通过训练的方式让系统"学 ...

随机推荐

  1. *(volatile unsigned int *)的理解

    1. 解释 前面是无符号整型unsigned int的指针, 后面加一个地址,就是无符号整型的地址,前面又一个星号就是这个地址的值. 2.volatile 同步 因为同一个东西可能在不同的存储介质中有 ...

  2. linux的ip文件参数说明

    TYPE=Ethernet # 网卡类型:为以太网 PROXY_METHOD=none # 代理方式:关闭状态 BROWSER_ONLY=no # 只是浏览器:否 BOOTPROTO=dhcp # 网 ...

  3. SubsamplingScaleImageView 源码解析

    一开始没打算分析 SubsamplingScaleImageView 这个开源的图片浏览器的,因为这个库在我们 App 中使用了,觉得自己对这个库还是比较熟悉的,结果某天再看看到源码介绍的时候,才发现 ...

  4. 撸了一个可调试 gRPC 的 GUI 客户端

    前言 平时大家写完 gRPC 接口后是如何测试的?往往有以下几个方法: 写单测代码,自己模拟客户端测试. 可以搭一个 gRPC-Gateway 服务,这样就可以在 postman 中进行模拟. 但这两 ...

  5. 洛谷 P4062 - [Code+#1]Yazid 的新生舞会 的线性做法

    洛谷题面传送门 一个线性做法. \(n\log n\) 解法可以戳这里查看 首先回顾一下 \(n\log n\) 解法的过程:我们对于每一个数 \(x\),考察其出现位置,设为 \(t_1,t_2,t ...

  6. Codeforces 1383D - Rearrange(构造)

    Codeforces 题面传送门 & 洛谷题面传送门 一道不算困难的构造,花了一节英语课把它搞出来了,题解简单写写吧( 考虑从大往小加数,显然第三个条件可以被翻译为,每次加入一个元素,如果它所 ...

  7. Atcoder Grand Contest 020 F - Arcs on a Circle(DP+小技巧)

    Atcoder 题面传送门 & 洛谷题面传送门 一道难度 unavailable 的 AGC F 哦 首先此题最棘手的地方显然在于此题的坐标可以为任意实数,无法放入 DP 的状态,也无法直接计 ...

  8. IDE 常用配置

    启动进入欢迎页(项目选择页),而非直接进入项目 File > Settings > Appearance & Behavior > System Settings 在Star ...

  9. R语言实战(第二版)-part 1笔记

    说明: 1.本笔记对<R语言实战>一书有选择性的进行记录,仅用于个人的查漏补缺 2.将完全掌握的以及无实战需求的知识点略去 3.代码直接在Rsudio中运行学习 R语言实战(第二版) pa ...

  10. PHP非对称加密-RSA

    对称加密算法是在加密和解密时使用同一个密钥.与对称加密算法不同,非对称加密算法需要两个密钥--公开密钥(public key)和私有密钥(private key)进行加密和解密.公钥和密钥是一对,如果 ...