AlexeyAB DarkNet YOLOv3框架解析与应用实践(一)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(一)
Darknet: C语言中的开源神经网络
Darknet是一个用C和CUDA编写的开源神经网络框架。它速度快,易于安装,支持CPU和GPU计算。您可以在GitHub上找到源代码,也可以在这里阅读更多关于Darknet可以做什么的信息:
1. Installing Darknet
Darknet易于安装,只有两个可选依赖项:
OpenCV,如果你想要更广泛的支持图像类型。
如果你想计算GPU的话,安装CUDA。
两者都是可选的,所以让我们从安装基本系统开始。我只在Linux和Mac电脑上测试过。
Installing The Base System
首先在这里获取Darknet git存储库。这可以通过以下方式实现:
git clone https://github.com/pjreddie/darknet.git
cd darknet
make
如果这有效,你会看到一大堆编译信息飞驰而过:
mkdir -p obj
gcc -I/usr/local/cuda/include/ -Wall -Wfatal-errors -Ofast....
gcc -I/usr/local/cuda/include/ -Wall -Wfatal-errors -Ofast....
gcc -I/usr/local/cuda/include/ -Wall -Wfatal-errors -Ofast....
.....
gcc -I/usr/local/cuda/include/ -Wall -Wfatal-errors -Ofast -lm....
如果你有任何错误,试着去修正它们?如果一切看起来都编译正确,请尝试运行它!
./darknet
你应该得到输出:
usage: ./darknet <function>
使用CUDA编译
CPU上的Darknet速度很快,但是GPU上的速度快了500倍!你必须有一个Nvidia的GPU,你必须安装CUDA。我不会详细介绍CUDA的安装,因为它很可怕。
安装CUDA后,将基本目录中Makefile的第一行更改为:
GPU=1
现在你可以做这个项目,CUDA将被启用。默认情况下,它将在系统的第0个图形卡上运行网络(如果正确安装了CUDA,则可以使用nvidia smi列出图形卡)。如果要更改Darknet使用的卡,可以给它一个可选的命令行标志-i<index>,例如:
./darknet -i 1 imagenet test cfg/alexnet.cfg alexnet.weights
如果您使用CUDA编译,但出于任何原因希望进行CPU计算,则可以使用-nogpu来代替CPU:
./darknet -nogpu imagenet test cfg/alexnet.cfg alexnet.weights
用OpenCV编译
默认情况下,Darknet使用stb_image.h加载图像。如果你想更多的支持奇怪的格式(像CMYK jpeg),你可以使用OpenCV代替!OpenCV还允许您查看图像和检测,而无需将它们保存到磁盘。
首先安装OpenCV。如果从源代码处执行此操作,则会很长且很复杂,因此请尝试让包管理器为您执行此操作。
接下来,将Makefile的第2行更改为:
OPENCV=1
完成了!尝试一下,首先重新做一个项目。然后使用imtest例程测试图像加载和显示:
./darknet imtest data/eagle.jpg
2. YOLO:实时目标检测
你只看一次(YOLO)是一个最先进的实时物体检测系统。在Pascal Titan X上,它以每秒30帧的速度处理图像,在COCO test-dev上有57.9%的mAP。
与其他检测模型的比较
YOLOv3非常快速和准确。在0.5 IOU处测得的mAP中,YOLOv3与焦距损失相当,但速度快了约4倍。此外,可以轻松地权衡速度和准确性之间的简单改变模型的大小,无需再训练!


工作原理
先前的检测系统重新利用分类器或定位器来执行检测。他们将模型应用于多个位置和比例的图像。图像的高分区域被认为是检测。
使用完全不同的方法。将单一的神经网络应用于完整的图像。该网络将图像分为多个区域,并预测每个区域的包围盒和概率。这些边界框由预测的概率加权。
与基于分类器的系统相比,我们的模型有几个优点。它在测试时查看整个图像,因此它的预测由图像中的全局上下文通知。它也用单一的网络评估来预测,不像R-CNN这样的系统需要数千张单一的图像。这使得它非常快,比R-CNN快1000倍,比R-CNN快100倍。有关完整系统的详细信息,请参阅我们的论文。
AlexeyAB DarkNet YOLOv3框架解析与应用实践(一)的更多相关文章
- AlexeyAB DarkNet YOLOv3框架解析与应用实践(六)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(六) 1. Tiny Darknet 听过很多人谈论SqueezeNet. SqueezeNet很酷,但它只是优化参数计数.当大多数高 ...
- AlexeyAB DarkNet YOLOv3框架解析与应用实践(五)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(五) RNNs in Darknet 递归神经网络是表示随时间变化的数据的强大模型.为了更好地介绍RNNs,我强烈推荐Andrej K ...
- AlexeyAB DarkNet YOLOv3框架解析与应用实践(四)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(四) Nightmare 从前,在一所大学的大楼里,西蒙尼亚.维达第和齐瑟曼有一个很好的主意,几乎和你现在坐的大楼完全不同.他们想,嘿 ...
- AlexeyAB DarkNet YOLOv3框架解析与应用实践(三)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(三) ImageNet分类 您可以使用Darknet为1000级ImageNet挑战赛分类图像.如果你还没有安装Darknet,你应该 ...
- AlexeyAB DarkNet YOLOv3框架解析与应用实践(二)
AlexeyAB DarkNet YOLOv3框架解析与应用实践(二) 版本3有什么新功能? YOLOv3使用了一些技巧来改进训练和提高性能,包括:多尺度预测.更好的主干分类器等等.全部细节都在我们的 ...
- mybatis 3.x源码深度解析与最佳实践(最完整原创)
mybatis 3.x源码深度解析与最佳实践 1 环境准备 1.1 mybatis介绍以及框架源码的学习目标 1.2 本系列源码解析的方式 1.3 环境搭建 1.4 从Hello World开始 2 ...
- iScroll框架解析——Android 设备页面内 div(容器,非页面)overflow:scroll; 失效解决(转)
移动平台的活,兼容问题超多,今儿又遇到一个.客户要求在弹出层容器内显示内容,但内容条数过多,容器显示滚动条.按说是So easy,容器设死宽.高,CSS加属性 overflow:scroll; -we ...
- .NET Core 多框架支持(net45+netstandard20)实践中遇到的一些问题总结
.NET Core 多框架支持(net45+netstandard20)实践中遇到的一些问题总结 前言 本文主要是关于.NET Standard 代码 在多框架 和 多平台 支持自己实践过程中遇到的一 ...
- [转载]iOS 10 UserNotifications 框架解析
活久见的重构 - iOS 10 UserNotifications 框架解析 TL;DR iOS 10 中以前杂乱的和通知相关的 API 都被统一了,现在开发者可以使用独立的 UserNotifica ...
随机推荐
- 1.4.17 base标签
如果我们定义的超链接在另一个窗口打开,代码如下: <!DOCTYPE html> <html lang="en"> <head> <met ...
- 指定pdf的格式
爬虫实战[3]Python-如何将html转化为pdf(PdfKit) 前言 前面我们对博客园的文章进行了爬取,结果比较令人满意,可以一下子下载某个博主的所有文章了.但是,我们获取的只有文章中的文 ...
- android CVE
本文收集网上android cve的一些分析供后续学习: Android uncovers master-key:android1.6-4.0 由于ZIP格式允许存在两个或以上完全相同的路径,而安卓系 ...
- Java中常见的包
目录 JDK自带的包 第三方包 JDK自带的包 JAVA提供了强大的应用程序接口,既JAVA类库.他包含大量已经设计好的工具类,帮助程序员进行字符串处理.绘图.数学计算和网络应用等方面的工作.下面简单 ...
- Win64 驱动内核编程-4.内核里操作字符串
内核里操作字符串 字符串本质上就是一段内存,之所以和内存使用分开讲,是因为内核里的字符串太有花 样了,细数下来竟然有 4 种字符串!这四种字符串,分别是:CHAR*.WCHAR*.ANSI_STRIN ...
- Windows 驱动加载程序代码
#include <windows.h> #include <winsvc.h> #include <conio.h> #include <stdio.h&g ...
- Eureka讲解与应用
Eureka[juˈriːkə] 简介 Eureka是Netflix服务发现的服务端与客户端,Eureka提供服务注册以及服务发现的能力,当是Eureka Server时(注册中心),所有的客户端会向 ...
- Linux yum 报错:One of the configured repositories failed (Unknown), and yum doesn't have.
1. 请先确定你是无法联网还是配置问题. ping www.baidu.com 如果是正常ping那可以看这个帖子完成配置 https://blog.csdn.net/weicuidi/articl ...
- vscode 将本地项目上传到github、从github克隆项目以及删除github上的某个文件夹
一.将本地项目上传到github 1.创建本地仓库(文件夹) mkdir study//创建文件夹studycd study //进入study文件夹 2.通过命令git init把这个文件夹变成Gi ...
- PHP基础-常用的数组相关处理函数
一 数组键/值操作有关的函数 1. array_values()//获取数组中所有的值 $lamp=array("os"=>"linux", " ...