题目地址:https://leetcode-cn.com/problems/number-of-connected-components-in-an-undirected-graph/

题目描述

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.

Example 1:

Input: n = 5 and edges = [[0, 1], [1, 2], [3, 4]]

     0          3
| |
1 --- 2 4 Output: 2

Example 2:

Input: n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]]

     0           4
| |
1 --- 2 --- 3 Output: 1

Note:

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

题目大意

给定编号从 0 到 n-1 的 n 个节点和一个无向边列表(每条边都是一对节点),请编写一个函数来计算无向图中连通分量的数目。

解题方法

并查集

看到求联通分量的题,一般都可以用并查集。比如1101. The Earliest Moment When Everyone Become Friends

只要把并查集背下来,这个题目基本直接写上去就好了。

C++代码如下:

class Solution {
public:
int countComponents(int n, vector<vector<int>>& edges) {
map_ = vector<int>(n, 0);
components = n;
for (int i = 0; i < n; ++i) {
map_[i] = i;
}
for (vector<int>& edge : edges) {
uni(edge[0], edge[1]);
}
return components;
}
int find(int a) {
if (a == map_[a])
return a;
return find(map_[a]);
}
void uni(int a, int b) {
int pa = find(a);
int pb = find(b);
if (pa == pb)
return;
map_[pa] = pb;
components --;
}
private:
vector<int> map_;
int components;
};

日期

2019 年 9 月 22 日 —— 熬夜废掉半条命

【LeetCode】323. Number of Connected Components in an Undirected Graph 解题报告 (C++)的更多相关文章

  1. LeetCode 323. Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  2. [LeetCode] 323. Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  3. 323. Number of Connected Components in an Undirected Graph (leetcode)

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集

    [抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...

  5. 323. Number of Connected Components in an Undirected Graph

    算连接的..那就是union find了 public class Solution { public int countComponents(int n, int[][] edges) { if(e ...

  6. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  7. LeetCode Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  8. Number of Connected Components in an Undirected Graph -- LeetCode

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  9. [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

随机推荐

  1. TCP三次握手与Linux的TCP内核参数优化

    感谢各位技术大佬的资料分享,这里我把我理解的内容做一个整理 一:TCP的三次握手 1.TCP简述 TCP是一个面向连接的协议,在连接双方发送数据之前,首先需要建立一条连接.TCP建立连接可以简单称为: ...

  2. .NET SAAS 架构与设计 -SqlSugar ORM

    1.数据库设计 常用的Saas分库分为2种类型的库 1.1 基础信息库 主要存组织架构 .权限.字典.用户等 公共信息 性能优化:因为基础信息库是共享的,所以我们可以使用 读写分离,或者二级缓存来进行 ...

  3. 巩固javaweb第三天

    巩固内容: HTML 标题 HTML 标题(Heading)是通过<h1> - <h6> 标签来定义的. HTML 段落 HTML 段落是通过标签 <p> 来定义的 ...

  4. Linux信号1

    信号(signal)是一种软中断,他提供了一种处理异步事件的方法,也是进程间唯一的异步通信方式.在Linux系统中,根据POSIX标准扩展以后的信号机制,不仅可以用来通知某进程发生了什么事件,还可以给 ...

  5. 调试器gdb

    1.启动和退出gdb gdb调试的对象是可执行文件,而不是程序源代码.如果要使一个可执行文件可以被gdb调试,那么在使用编译器gcc编译程序时加入-g选项.-g选项告诉gcc在编译程序时加入调试信息, ...

  6. JAXB—Java类与XML文件之间转换

    JAXB-Java类与XML文件之间转换 简介         JAXB(Java Architecture for XML Binding) 是一个业界的标准,是一项可以根据XML Schema产生 ...

  7. 高效读取大文件,再也不用担心 OOM 了!

    内存读取 第一个版本,采用内存读取的方式,所有的数据首先读读取到内存中,程序代码如下: Stopwatch stopwatch = Stopwatch.createStarted(); // 将全部行 ...

  8. 转 android design library提供的TabLayout的用法

    原文出处:http://chenfuduo.me/2015/07/30/TabLayout-of-design-support-library/ 在开发中,我们常常需要ViewPager结合Fragm ...

  9. d3基础入门一-选集、数据绑定等核心概念

    引入D3 D3下载,本文下载时的版本为6.5.0 mkdir d3.6.5.0 unzip --help unzip d3.zip -d d3.6.5.0/ ls d3.6.5.0/ API.md C ...

  10. sftp 上传下载 命令介绍

    sftp是Secure FileTransferProtocol的缩写,安全文件传送协议.可以为传输文件提供一种安全的加密方法. sftp与 ftp有着几乎一样的语法和功能.SFTP为 SSH的一部分 ...