题目地址:https://leetcode-cn.com/problems/number-of-connected-components-in-an-undirected-graph/

题目描述

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.

Example 1:

Input: n = 5 and edges = [[0, 1], [1, 2], [3, 4]]

     0          3
| |
1 --- 2 4 Output: 2

Example 2:

Input: n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]]

     0           4
| |
1 --- 2 --- 3 Output: 1

Note:

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

题目大意

给定编号从 0 到 n-1 的 n 个节点和一个无向边列表(每条边都是一对节点),请编写一个函数来计算无向图中连通分量的数目。

解题方法

并查集

看到求联通分量的题,一般都可以用并查集。比如1101. The Earliest Moment When Everyone Become Friends

只要把并查集背下来,这个题目基本直接写上去就好了。

C++代码如下:

class Solution {
public:
int countComponents(int n, vector<vector<int>>& edges) {
map_ = vector<int>(n, 0);
components = n;
for (int i = 0; i < n; ++i) {
map_[i] = i;
}
for (vector<int>& edge : edges) {
uni(edge[0], edge[1]);
}
return components;
}
int find(int a) {
if (a == map_[a])
return a;
return find(map_[a]);
}
void uni(int a, int b) {
int pa = find(a);
int pb = find(b);
if (pa == pb)
return;
map_[pa] = pb;
components --;
}
private:
vector<int> map_;
int components;
};

日期

2019 年 9 月 22 日 —— 熬夜废掉半条命

【LeetCode】323. Number of Connected Components in an Undirected Graph 解题报告 (C++)的更多相关文章

  1. LeetCode 323. Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  2. [LeetCode] 323. Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  3. 323. Number of Connected Components in an Undirected Graph (leetcode)

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集

    [抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...

  5. 323. Number of Connected Components in an Undirected Graph

    算连接的..那就是union find了 public class Solution { public int countComponents(int n, int[][] edges) { if(e ...

  6. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  7. LeetCode Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  8. Number of Connected Components in an Undirected Graph -- LeetCode

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  9. [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

随机推荐

  1. Augustus指南(Trainning部分)

    Augustus指南 官方 Tutorial Index Augustus是一个真核生物基因预测软件,目前有网页服务端和本地版,它基于Hidden-Markov Model(隐马尔科夫链模型HMM)( ...

  2. centOS6和7单用户修改密码

    CentOS6 1.       进入启动系统倒计时的时候,按esc 之后进入一下界面: 2.       按a 键进入修改内核参数页面 3.       在quiet后面加入空格和1 ,如下:回车进 ...

  3. c#Gridview添加颜色

    e.Row.Cells[1].ForeColor = System.Drawing.Color.Blue;

  4. Kafka(一)【概述、入门、架构原理】

    目录 一.Kafka概述 1.1 定义 二.Kafka快速入门 2.1 安装部署 2.2 配置文件解析 2.3Kafka群起脚本 2.4 topic(增删改查) 2.5 生产和消费者命令行操作 三.K ...

  5. 使用微信开放标签<wx-open-launch-weapp>的踩坑日记

    最近在完成H5跳转小程序需求时,使用到了微信官方退出的开放标签<wx-open-launch-weapp>,来谈一谈使用的心得和不足. 1.适用环境微信版本要求为:7.0.12及以上. 系 ...

  6. Sharding-JDBC 实现垂直分库水平分表

    1.需求分析

  7. Angular 中 [ngClass]、[ngStyle] 的使用

    1.ngStyle 基本用法 1 <div [ngStyle]="{'background-color':'green'}"></<div> 判断添加 ...

  8. 【MPI环境配置】 vs2019配置MPI环境

    MPI 即 Message-Passing Interface,提供了一系列并行编程的接口,为了在本机能够学习和使用并行编程,需要提前安装MPI; 配置环境: Microsoft Visual Stu ...

  9. [学习总结]6、Android异步消息处理机制完全解析,带你从源码的角度彻底理解

    开始进入正题,我们都知道,Android UI是线程不安全的,如果在子线程中尝试进行UI操作,程序就有可能会崩溃.相信大家在日常的工作当中都会经常遇到这个问题,解决的方案应该也是早已烂熟于心,即创建一 ...

  10. t01_docker安装TiDB

    Docker环境安装TiDB,在官方说明的基础上补充了几个细节,安装记录如下 个人环境-vbox上安装centos7.4系统 CPU:12核24线程,分配给虚拟机12线程 MEM: 48G,分配给虚拟 ...