Codeforces 251D - Two Sets(异或方程组)
题意:
你有一个可重集 \(S=\{a_1,a_2,\dots,a_n\}\),你要把它划分成两个可重集 \(S_1,S_2\) 使得 \(S\) 中每个元素都恰好属于 \(S_1\) 与 \(S_2\) 之一。
记 \(X_1\) 为 \(S_1\) 中所有元素的异或和,\(X_2\) 为 \(S_2\) 中所有元素的异或和。
最大化 \(X_1+X_2\),如果有多种分配方案,再最小化 \(X_1\)。
\(n \in [1,10^5],a_i \in [1,10^{18}]\)
暑假省选班讲过这道题,当时听得一脸懵B,还问lxr为什么线性基本质上就是高斯消元。。。。。。wtclwtcl
设 \(X=a_1 \oplus a_2 \oplus a_3 \oplus\dots\oplus a_n\),那么显然有 \(X_1\oplus X_2=X\)。
考虑 \(X\) 二进制上的每一位,如果 \(X\) 的第 \(i\) 位为 \(1\),那么意味着它只能拆成 \(0\) 和 \(1\),不会对 \(X_1+X_2\) 产生影响。
但如果 \(X\) 的第 \(i\) 位为 \(0\),那么它可以拆成 \(0,0\) 或者 \(1,1\),我们的目标是让 \(X_1+X_2\) 尽可能大,我们就要尽量选择 \(1,1\),也就是要尽量让 \(X_1\) 的第 \(i\) 位为 \(1\)。
我们假设 \(n\) 个未知数 \(x_1,x_2,\dots,x_n\),\(x_i=1\) 表示 \(i\) 被分配到第一堆,\(x_i=0\) 表示 \(i\) 被分配到第二堆。
那么 \(X_1\) 的第 \(b\) 位为 \(1\) 等价于一个异或方程 \(t_1x_1\oplus t_2x_2\oplus\dots\oplus t_nx_n=1\),其中 \(t_i\) 表示 \(a_i\) 二进制下的第 \(b\) 位是否为 \(1\)。
具体地来说,我们找到 \(X\) 中最高的为 \(0\) 的二进制位 \(b\),根据之前的推论可以列出一个异或方程,如果该异或方程有解,那么我们肯定要在这一位上放 \(1\)。因为如果你在这一位上放 \(1\),哪怕后面都是 \(0\),那 \(X_1+X_2\) 也有 \(2^{b+1}\),而如果你在这一位上放 \(0\),哪怕后面都放 \(1\),结果也只有 \(2^{b+1}-2\)。
我们考虑这样的贪心做法:从高位向低位枚举每一个 \(X\) 二进制下为 \(0\) 的二进制位 \(b\),我们尝试着在这一位上放 \(1\),如果存在一种方案,它既能够满足前面的条件(在第 \(b\) 位前面放 \(1\) 的位都对应一个异或方程,把它们联立起来得到的异或方程组),那么我们就在这一位上放 \(1\),否则就在这一位上放 \(0\)。
最大化 \(X_1+X_2\) 之后,我们再考虑 \(X_1\) 尽量小这个条件。这时候 \(X\) 为 \(1\) 的二进制位就要派上用场了。对于 \(X\) 二进制下为 \(1\) 的位,它又可以细分为第 \(1\) 堆分配 \(0\),第 \(2\) 堆分配 \(1\),以及第 \(1\) 堆分配 \(1\),第 \(2\) 堆分配 \(0\)。我们肯定希望第一堆分配地尽可能少,于是我们重复一遍前面的操作,找到一个 \(1\) 位就尝试填 \(0\),就可以了。
于是我们有了优秀的 \(n \log^3a_i\) 的做法,每次就联立出一个异或方程组,然后高斯消元判断这个异或方程组是否有解。
但其实并不用每次都重新消一遍,对于每个新的异或方程,都用前面的方程消去它的最高位(类似于线性基?)。这样是 \(n\log^2a_i\) 的,再注意到每一位系数都是 \(0/1\),可以用 bitset 再搞掉一个 \(\log\)。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define ffe(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
typedef pair<int,int> pii;
typedef long long ll;
const int MAXN=1e5+5;
const int MAXB=63+2;
int n;ll a[MAXN],s=0;
bitset<MAXN> bt[MAXB];
int hi[MAXN],pos[MAXN],cur=0,ans[MAXN];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]),s^=a[i];
for(int i=62;~i;i--) if(!(s>>i&1)){
++cur;
for(int j=1;j<=n;j++) if((a[j]>>i)&1) bt[cur][j]=1;
bt[cur][n+1]=1;
for(int j=1;j<cur;j++) if(bt[cur][hi[j]]) bt[cur]^=bt[j];
for(int j=1;j<=n;j++) if(bt[cur][j]){hi[cur]=j;break;}
if(!hi[cur]){bt[cur].reset();cur--;continue;}
for(int j=1;j<cur;j++){
if(bt[j][hi[cur]]) bt[j]^=bt[cur];
}
}
for(int i=62;~i;i--) if(s>>i&1){
++cur;
for(int j=1;j<=n;j++) if((a[j]>>i)&1) bt[cur][j]=1;
bt[cur][n+1]=0;
for(int j=1;j<cur;j++) if(bt[cur][hi[j]]) bt[cur]^=bt[j];
for(int j=1;j<=n;j++) if(bt[cur][j]){hi[cur]=j;break;}
if(!hi[cur]){bt[cur].reset();cur--;continue;}
for(int j=1;j<cur;j++){
if(bt[j][hi[cur]]) bt[j]^=bt[cur];
}
}
for(int i=1;i<=cur;i++) ans[hi[i]]=bt[i][n+1];
for(int i=1;i<=n;i++) printf("%d ",2-ans[i]);
return 0;
}
Codeforces 251D - Two Sets(异或方程组)的更多相关文章
- 【HDU 5833】Zhu and 772002(异或方程组高斯消元)
300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案. 合法方案的每个数的质因数的个数的奇偶值异或起来为0. 比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3 ...
- 小游戏 Lights Out (关灯) 的求解 —— 异或方程组
Author : Evensgn Blog Link : http://www.cnblogs.com/JoeFan/ Article Link : http://www.cnblogs.com/J ...
- hdu 5833 Zhu and 772002 异或方程组高斯消元
ccpc网赛卡住的一道题 蓝书上的原题 但是当时没看过蓝书 今天又找出来看看 其实也不是特别懂 但比以前是了解了一点了 主要还是要想到构造异或方程组 异或方程组的消元只需要xor就好搞了 数学真的是硬 ...
- bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)
http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...
- bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...
- BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)
题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...
- bzoj 2466 异或方程组
对于每个灯,我们用一个变量表示其决策,xu=0表示不选,xu=1表示选.因为每个灯最后必须都亮,所以每个等都对应一个异或方程. 解这个异或方程组,有几种情况: 1.存在唯一解(得到的上三角系数矩阵的主 ...
- 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组
[题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...
- 高斯消元法求解异或方程组: cojs.tk 539.//BZOJ 1770 牛棚的灯
高斯消元求解异或方程组: 比较不错的一篇文章:http://blog.sina.com.cn/s/blog_51cea4040100g7hl.html cojs.tk 539. 牛棚的灯 ★★☆ ...
随机推荐
- C#特性知识图谱-二、事件
C#特性知识图谱-二.事件 二.事件 在事件驱动的软件系统中,符合某种预设条件的情形出现是,一个事件就会被触发. 2.1 事件三要素 事件源:激发事件的对象 事件信息:事件本身说携带的信息 事件响应者 ...
- Manacher(马拉车)
Able was I ere I saw Elba. ----Napoléon Bonaparte(拿破仑) 一.回文串&回文子串 这个很好理解. 如果一个字符串正着读和反着读是一 ...
- STM32中断编程三步曲教你弄会中断设置以及中断优先级设置
中断作为stm32中必不可少的一个功能,其重要性是不言而喻的因此把中断学习好是根本. 所以今天就来好好啃一下中断配置的知识,俗话说:磨刀不误砍柴工.问题是什么呢?项目中我用到了一个触摸键盘TTP229 ...
- matplotlib.legend()函数用法
用的较多,作为记录 legend语法参数如下: matplotlib.pyplot.legend(*args, **kwargs) 几个暂时主要用的参数: (1)设置图例位置 使用loc参数 plt. ...
- python mysqlclient安装失败 Command "python setup.py egg_info" failed with error code 1
python2 python3 中代码 pip install mysqlclient 都安装失败的话, 很有可能是你的操作系统中没有安装mysql 如果确定已经安装了,请忽略下面的内容. Ubunt ...
- 空格替换 牛客网 程序员面试金典 C++ Python
空格替换 牛客网 程序员面试金典 C++ Python 题目描述 请编写一个方法,将字符串中的空格全部替换为"%20".假定该字符串有足够的空间存放新增的字符,并且知道字符串的真实 ...
- AtCoder Regular Contest 128 部分题题解
关于鄙人罚坐两小时那件事...该开始看A题,这不就是个DP记录路径吗?Wrong了,嗯,我没用double,又Wrong,怎么回事,使劲检查自己的算法和细节问题,一个小时过去了,...这没错啊,又反复 ...
- poj 1330 Nearest Common Ancestors (最简单的LCA)
题意: 给出一棵树的结构. 给出两个点X和Y,求它俩的LCA. 思路: 只需求两个点的LCA,用了两种方法,一种离线tarjan,一种直接搞. 看代码. 代码: 方法一:直接搞. int const ...
- 基于Dapr的 Azure 容器应用
微软在 Ignite 2021 大会上发布了预览版的Azure Container Apps,这是一个完全托管的无服务器容器运行时间,用于大规模构建和运行现代应用程序.从2021 年 11 月 2 日 ...
- Fiddler抓包工具简介:(一)认识Fiddler
认识Fiddler Fiddler是一个http协议调试代理工具,它能够记录并检查所有你的电脑和互联网之间的http通讯,设置断点,查看所有的"进出"Fiddler的数据(指coo ...