Codeforces 251D - Two Sets(异或方程组)
题意:
你有一个可重集 \(S=\{a_1,a_2,\dots,a_n\}\),你要把它划分成两个可重集 \(S_1,S_2\) 使得 \(S\) 中每个元素都恰好属于 \(S_1\) 与 \(S_2\) 之一。
记 \(X_1\) 为 \(S_1\) 中所有元素的异或和,\(X_2\) 为 \(S_2\) 中所有元素的异或和。
最大化 \(X_1+X_2\),如果有多种分配方案,再最小化 \(X_1\)。
\(n \in [1,10^5],a_i \in [1,10^{18}]\)
暑假省选班讲过这道题,当时听得一脸懵B,还问lxr为什么线性基本质上就是高斯消元。。。。。。wtclwtcl
设 \(X=a_1 \oplus a_2 \oplus a_3 \oplus\dots\oplus a_n\),那么显然有 \(X_1\oplus X_2=X\)。
考虑 \(X\) 二进制上的每一位,如果 \(X\) 的第 \(i\) 位为 \(1\),那么意味着它只能拆成 \(0\) 和 \(1\),不会对 \(X_1+X_2\) 产生影响。
但如果 \(X\) 的第 \(i\) 位为 \(0\),那么它可以拆成 \(0,0\) 或者 \(1,1\),我们的目标是让 \(X_1+X_2\) 尽可能大,我们就要尽量选择 \(1,1\),也就是要尽量让 \(X_1\) 的第 \(i\) 位为 \(1\)。
我们假设 \(n\) 个未知数 \(x_1,x_2,\dots,x_n\),\(x_i=1\) 表示 \(i\) 被分配到第一堆,\(x_i=0\) 表示 \(i\) 被分配到第二堆。
那么 \(X_1\) 的第 \(b\) 位为 \(1\) 等价于一个异或方程 \(t_1x_1\oplus t_2x_2\oplus\dots\oplus t_nx_n=1\),其中 \(t_i\) 表示 \(a_i\) 二进制下的第 \(b\) 位是否为 \(1\)。
具体地来说,我们找到 \(X\) 中最高的为 \(0\) 的二进制位 \(b\),根据之前的推论可以列出一个异或方程,如果该异或方程有解,那么我们肯定要在这一位上放 \(1\)。因为如果你在这一位上放 \(1\),哪怕后面都是 \(0\),那 \(X_1+X_2\) 也有 \(2^{b+1}\),而如果你在这一位上放 \(0\),哪怕后面都放 \(1\),结果也只有 \(2^{b+1}-2\)。
我们考虑这样的贪心做法:从高位向低位枚举每一个 \(X\) 二进制下为 \(0\) 的二进制位 \(b\),我们尝试着在这一位上放 \(1\),如果存在一种方案,它既能够满足前面的条件(在第 \(b\) 位前面放 \(1\) 的位都对应一个异或方程,把它们联立起来得到的异或方程组),那么我们就在这一位上放 \(1\),否则就在这一位上放 \(0\)。
最大化 \(X_1+X_2\) 之后,我们再考虑 \(X_1\) 尽量小这个条件。这时候 \(X\) 为 \(1\) 的二进制位就要派上用场了。对于 \(X\) 二进制下为 \(1\) 的位,它又可以细分为第 \(1\) 堆分配 \(0\),第 \(2\) 堆分配 \(1\),以及第 \(1\) 堆分配 \(1\),第 \(2\) 堆分配 \(0\)。我们肯定希望第一堆分配地尽可能少,于是我们重复一遍前面的操作,找到一个 \(1\) 位就尝试填 \(0\),就可以了。
于是我们有了优秀的 \(n \log^3a_i\) 的做法,每次就联立出一个异或方程组,然后高斯消元判断这个异或方程组是否有解。
但其实并不用每次都重新消一遍,对于每个新的异或方程,都用前面的方程消去它的最高位(类似于线性基?)。这样是 \(n\log^2a_i\) 的,再注意到每一位系数都是 \(0/1\),可以用 bitset
再搞掉一个 \(\log\)。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define ffe(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
typedef pair<int,int> pii;
typedef long long ll;
const int MAXN=1e5+5;
const int MAXB=63+2;
int n;ll a[MAXN],s=0;
bitset<MAXN> bt[MAXB];
int hi[MAXN],pos[MAXN],cur=0,ans[MAXN];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]),s^=a[i];
for(int i=62;~i;i--) if(!(s>>i&1)){
++cur;
for(int j=1;j<=n;j++) if((a[j]>>i)&1) bt[cur][j]=1;
bt[cur][n+1]=1;
for(int j=1;j<cur;j++) if(bt[cur][hi[j]]) bt[cur]^=bt[j];
for(int j=1;j<=n;j++) if(bt[cur][j]){hi[cur]=j;break;}
if(!hi[cur]){bt[cur].reset();cur--;continue;}
for(int j=1;j<cur;j++){
if(bt[j][hi[cur]]) bt[j]^=bt[cur];
}
}
for(int i=62;~i;i--) if(s>>i&1){
++cur;
for(int j=1;j<=n;j++) if((a[j]>>i)&1) bt[cur][j]=1;
bt[cur][n+1]=0;
for(int j=1;j<cur;j++) if(bt[cur][hi[j]]) bt[cur]^=bt[j];
for(int j=1;j<=n;j++) if(bt[cur][j]){hi[cur]=j;break;}
if(!hi[cur]){bt[cur].reset();cur--;continue;}
for(int j=1;j<cur;j++){
if(bt[j][hi[cur]]) bt[j]^=bt[cur];
}
}
for(int i=1;i<=cur;i++) ans[hi[i]]=bt[i][n+1];
for(int i=1;i<=n;i++) printf("%d ",2-ans[i]);
return 0;
}
Codeforces 251D - Two Sets(异或方程组)的更多相关文章
- 【HDU 5833】Zhu and 772002(异或方程组高斯消元)
300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案. 合法方案的每个数的质因数的个数的奇偶值异或起来为0. 比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3 ...
- 小游戏 Lights Out (关灯) 的求解 —— 异或方程组
Author : Evensgn Blog Link : http://www.cnblogs.com/JoeFan/ Article Link : http://www.cnblogs.com/J ...
- hdu 5833 Zhu and 772002 异或方程组高斯消元
ccpc网赛卡住的一道题 蓝书上的原题 但是当时没看过蓝书 今天又找出来看看 其实也不是特别懂 但比以前是了解了一点了 主要还是要想到构造异或方程组 异或方程组的消元只需要xor就好搞了 数学真的是硬 ...
- bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)
http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...
- bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...
- BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)
题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...
- bzoj 2466 异或方程组
对于每个灯,我们用一个变量表示其决策,xu=0表示不选,xu=1表示选.因为每个灯最后必须都亮,所以每个等都对应一个异或方程. 解这个异或方程组,有几种情况: 1.存在唯一解(得到的上三角系数矩阵的主 ...
- 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组
[题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...
- 高斯消元法求解异或方程组: cojs.tk 539.//BZOJ 1770 牛棚的灯
高斯消元求解异或方程组: 比较不错的一篇文章:http://blog.sina.com.cn/s/blog_51cea4040100g7hl.html cojs.tk 539. 牛棚的灯 ★★☆ ...
随机推荐
- JavaScript兼容性汇总
一般兼容性问都体现到DOM和事件上 只聊ie6+版本浏览器,希望小伙伴们别纠结更低版本浏览器哈^_^ DOM 获取元素 document.getElementsByclassName 不兼容ie6 ...
- shopping cart
#Author:Kevin_hou #定义产品列表 product_list =[ ('HUAWEI',5999), ('Watch',500), ('Nike',800), ('Toyota',20 ...
- noj->电子老鼠走迷宫
00 问题 描述: 有一只电子老鼠被困在如下图所示的迷宫中.这是一个12*12单元的正方形迷宫,黑色部分表示建筑物,白色部分是路.电子老鼠可以在路上向上.下.左.右行走,每一步走一个格子.现给定一个起 ...
- 92.反转链表II
题目 给你单链表的头指针 head 和两个整数 left 和 right ,其中 left <= right .请你反转从位置 left 到位置 right 的链表节点,返回 反转后的链表 . ...
- 利用 pip 安装 Python 程序包到个人用户文件夹下
利用 --user 参数,即 pip install --user package_name 这样会将Python 程序包安装到 $HOME/.local 路径下,其中包含三个字文件夹:bin,lib ...
- Java多线程中的死锁
Java多线程中的死锁 死锁产生的原因 线程死锁是指由两个以上的线程互相持有对方所需要的资源,导致线程处于等待状态,无法往前执行. 当线程进入对象的synchronized代码块时,便占有了资源,直到 ...
- [no code][scrum meeting] Beta 4
例会时间:5月16日11:30,主持者:伦泽标 下次例会时间:5月18日11:30,主持者:叶开辉 一.工作汇报 人员 昨日完成任务 明日要完成的任务 乔玺华 完成整体框架设计与登录逻辑 与后端对接 ...
- oracle物化视图创建及删除
--删除物化表的日志表 DROP MATERIALIZED VIEW LOG ON 表名; --为将要创建物化视图的表添加带主键的日志表 CREATE MATERIALIZED VIEW LOG ON ...
- Java I/O框架 - 总结概述
总结 以下需要重点掌握: 字节流,以下读取结束全部返回-1 字节节点流-访问文件 FileInputStream/FileOutputStream 可以读取任意文件 可以复制图片 读取字符String ...
- shell调用另一个脚本的三种方式fork/exec/source
exec和source都属于bash内部命令(builtins commands),在bash下输入man exec或man source可以查看所有的内部命令信息. bash shell的命令分为两 ...