正题

题目链接:https://www.luogu.com.cn/problem/P4980


题目大意

\(n\)个物品图上\(m\)种颜色,求在可以旋转的情况下本质不同的涂色方案。


解题思路

既然是群论基本题就顺便写一下刚刚了解到的相关知识把(顺便消磨一下时间

一个群\((G,\times )\)定义为一个在运算\(\times\)下满足以下条件的集合

  1. 封闭性:若存在\(a,b\in G\)那么有\(a\times b\in G\)
  2. 交换律:若有\(a,b,c\in G\)那么有\((a\times b)\times c=a\times (b\times c)\)
  3. 单位元:群中\(\exists e\in G\)满足\(\forall x\in G\)都有\(x\times e=x\)
  4. 逆元:对于\(\forall x\in G\)都有一个唯一元素\(y\in G\)且\(x\times y=e\)

然后中间一些东西很多很杂这里不多说了,直接到置换部分。

一般来说规定置换第一行为\((1,2,3...)\),那么定义一个置换\(\sigma=(g_1,g_2,g_3,...)\)。如果一个置换作用与一个排列\(a\),一般写为\(\sigma(a)=b\)的话,就有\(b_i=a_{g_i}\)。需要注意的是对于一个置换两次后相当与使用了另一个置换。(也就是置换只能生效一次

然后就是\(\text{Burnside}\)引理了,对于一个置换群\(G\),若\(G\)作用与一个集合\(X\)时,集合\(X\)中本质不同的元素个数为

\[\frac{1}{|G|}\sum_{f\in G}C(f)
\]

其中\(C(f)\)表示\(X\)的所有元素中对于置换\(f\)的不动点数量。

而\(\text{Polya}\)定理就是建立在\(\text{Burnside}\)引理上的,对于一个置换\(f\),定义它的循环节数量为\(T(f)\),用\(m\)种颜色染色时方本质不同的染色方案数就是

\[\frac{1}{|G|}\sum_{f\in G}m^{T(f)}
\]

也就是\(m^{T(f)}=C(f)\),这个很显然,因为每个循环节涂成一种颜色就是一个不动点。

回到这题的旋转来,我们可以将其视为\(n\)个不同的置换构成的一个置换群。对于旋转\(i\)步,它的循环节数量就是\(gcd(n,i)\),也就是我们要求

\[\frac{1}{n}\sum_{i=0}^{n-1}m^{gcd(n,i)}
\]

枚举一下\(gcd(n,i)\)

\[\frac{1}{n}\sum_{d|n}m^d\sum_{i=1}^{\frac{n}{d}}[gcd(\frac{n}{d},i)==1]
\]

哦对啊好像有\(m=n\)

\[\frac{1}{n}\sum_{d|n}n^d\varphi(\frac{n}{d})=\sum_{d|n}n^{d-1}\varphi(\frac{n}{d})
\]

这个时间复杂度大概是\(O(Tn^{\frac{3}{4}})\)的,但是因为约数个数远到不了\(\sqrt n\)所以你可以把它视为常数比较大的\(O(T\sqrt n)\)?


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll P=1e9+7;
ll T,n,ans;
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
ll phi(ll x){
ll ans=x;
for(ll i=2;i*i<=x;i++){
if(x%i)continue;
while(x%i==0)x/=i;
ans=ans/i*(i-1);
}
if(x>1)ans=ans/x*(x-1);
return ans;
}
ll calc(ll x)
{return phi(x)*power(n,n/x-1)%P;}
signed main()
{
scanf("%lld",&T);
while(T--){
scanf("%lld",&n);ans=0;
for(ll i=1;i*i<=n;i++){
if(n%i)continue;
ans=(ans+calc(i))%P;
if(i*i!=n)ans=(ans+calc(n/i))%P;
}
printf("%lld\n",ans);
}
return 0;
}

P4980-[模板]Pólya定理的更多相关文章

  1. P4980 【模板】Polya定理

    思路 polya定理的模板题,但是还要加一些优化 题目的答案就是 \[ \frac{\sum_{i=1}^n n^{gcd(i,n)}}{n} \] 考虑上方的式子怎么求 因为\(gcd(i,n)\) ...

  2. [洛谷P4980]【模板】Polya定理

    题目大意:给一个$n$个点的环染色,有$n$中颜色,问有多少种涂色方案是的旋转后本质不同 题解:$burnside$引理:$ans=\dfrac1{|G|}\sum\limits_{g\in G}A_ ...

  3. 等价类计数:Burnside引理 & Polya定理

    提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ ...

  4. [wikioi2926][AHOI2002]黑白瓷砖(Polya定理)

    小可可在课余的时候受美术老师的委派从事一项漆绘瓷砖的任务.首先把n(n+1)/2块正六边形瓷砖拼成三角形的形状,右图给出了n=3时拼成的“瓷砖三角形”.然后把每一块瓷砖漆成纯白色或者纯黑色,而且每块瓷 ...

  5. HDU 3923 Invoker 【裸Polya 定理】

    参考了http://blog.csdn.net/ACM_cxlove?viewmode=contents           by---cxlove 的模板 对于每一种染色,都有一个等价群,例如旋转, ...

  6. Necklace of Beads (polya定理的引用)

    Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n &l ...

  7. poj1286 Necklace of Beads—— Polya定理

    题目:http://poj.org/problem?id=1286 真·Polya定理模板题: 写完以后感觉理解更深刻了呢. 代码如下: #include<iostream> #inclu ...

  8. poj2154 Color ——Polya定理

    题目:http://poj.org/problem?id=2154 今天学了个高端的东西,Polya定理... 此题就是模板,然而还是写了好久好久... 具体看这个博客吧:https://blog.c ...

  9. Necklace of Beads(polya定理)

    http://poj.org/problem?id=1286 题意:求用3种颜色给n个珠子涂色的方案数.polya定理模板题. #include <stdio.h> #include &l ...

  10. poj 1286 polya定理

    Necklace of Beads Description Beads of red, blue or green colors are connected together into a circu ...

随机推荐

  1. 使用C# 实现串口拨号器的SIM卡通信

    参考网址:https://www.cnblogs.com/xugang/archive/2012/08/23/2652671.html 写此博客意为抛砖引玉,希望能和博客园的朋友们探讨一下关于.NET ...

  2. C#中的信号量---Semaphore

    emaphore是System.Threading下的类,限制可同时访问某一资源或资源池的线程数. 常用构造方法 https://msdn.microsoft.com/zh-cn/library/e1 ...

  3. Windows10 Dev - Background Execution

    The Universal Windows Platform (UWP) introduces new mechanisms, which allow the applications to perf ...

  4. Java HdAcm1069

    import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class Main { Lis ...

  5. unitest单元测试TestCase 执行测试用例(一)

    前言 unittest单元测试框架不仅可以适用于单元测试,还可以适用自动化测试用例的开发与执行,该测试框架可组织执行测试用例,并且提供了丰富的断言方法,判断测试用例是否通过,最终生成测试结果. uni ...

  6. Bing每日壁纸的RESTful接口实现

    0x00 存在意义 权且当作Docker打包的练习. 显然可以通过构造请求获得每天的壁纸,但是如果想要优雅地在其它地方使用这一网络资源,封装一个RESTful API将会保证整洁美观,在编写CSS等场 ...

  7. T-SQL - query03_去重查询|模糊查询|排序|分组|使用函数

    时间:2017-09-29 整理:byzqy 本篇仍以"梁山好汉"数据表为例,介绍几个常用的 T-SQL 查询语句: 去重查询,关键字:distinct 使用通配符模糊查询,关键字 ...

  8. 实型(浮点型):float、double

    实型(浮点型):float.double 实型变量也可以称为浮点型,浮点型变量是用来存储小数数值的.在C语言中,浮点型分为两种:单精度浮点型(float).双精度浮点型(double),但是doubl ...

  9. leetcode 位运算异或

    1. 只出现一次的数字(136) 异或的性质总结: 相异为1,相同为0: a ^ a = 0; 0 ^ a = a; 如果 a ^ b = c 成立,那么a ^ c = b 与 b ^ c = a 均 ...

  10. 第九章 Net 5.0 快速开发框架 YC.Boilerplate --定时服务 Quartz.net

    在线文档:http://doc.yc-l.com/#/README 在线演示地址:http://yc.yc-l.com/#/login 源码github:https://github.com/linb ...